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Publishable Summary 

The aim of this document is to describe a standard set of analytical methods that can be applied 

to measure IVE in the European context of diverse vaccine products, distribution, 

recommendations, and administration as well as diverse influenza diagnostic and therapeutic 

approaches. This document served as guidance to revise the protocols within DRIVE and to 

document insights gained during the DRIVE project. 

The different study designs that can be used to assess influenza vaccine effectiveness are 

presented, followed by aspects related to exposure and outcome definitions and collection of 

data. Sources of bias and confounders are explained and how they can be addressed through 

the design or the analysis. Available laboratory tests for the detection of influenza infections 

are described. Methods for rapid assessment of IVE are presented. From a data analysis 

perspective, methods for analysis of individual studies and pooled analyses (one-stage vs. 

two-stage pooling) are described. 

Each chapter concludes with a set of recommendations, and where appropriate, a distinction 

between studies collecting primary data (test-negative design studies) and studies that make 

use of secondary data (such as cohort studies using healthcare databases) is made. These 

recommendations serve as guidance for optimal choices in the design/analysis of studies using 

the current existing methods for IVE estimation.  
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1 Background and objective 

The main objective of DRIVE is to enable the collaboration of different public and private 

stakeholders to perform annual VE studies for the various influenza vaccines on the European 

market. Work package (WP) 4 aims to create a framework to analyze, present, interpret and 

report influenza vaccine effectiveness (IVE) study results in such a way that all stakeholders 

can endorse its conclusions. This document constitutes the deliverable of task WP4.1.   

1.1 Purpose of this document  

This document aims to describe a standard set of analytical methods that can be applied to 

measure IVE in the European context of diverse vaccine manufacturing, distribution, and 

administration, as well as diverse influenza diagnostic and therapeutic approaches. This 

document has served as guidance to revise the protocols within DRIVE. Please refer to D7.3 

for novel or innovative methods; these will not be discussed in this document.  

 

This set of methods builds upon existing guidance documents, such as IVE guidance from 

I-MOVE [1] and the World Health Organization (WHO) [2], and general vaccine effectiveness 

(VE) guidance from ADVANCE and ENCePP.  

 

The European Medicine Agency (EMA) guidance released in 2016 requires marketing 

authorization holders (MAHs) to estimate product-specific IVE against laboratory-confirmed 

influenza on an annual basis [3, 4]. Challenges faced when performing IVE studies and pooling 

results from those in different countries include bias and confounding, differences in strain 

circulation between EU countries, and differences in coverage affecting potential herd 

immunity. Additional challenges to be overcome when estimating brand-specific IVE include 

timely influenza-vaccine brand identification at individual level, adequate sample size and lack 

of uniform administration of vaccine types across populations. 

 

This framework was developed during the first year of DRIVE and updated in the final year 

based on new insights and experiences gained in DRIVE. 

1.2 Contents of this document 

Each chapter describes one aspect of IVE studies. At the end of each chapter, 

recommendations are provided for the “optimal” scenario; where appropriate, we distinguish 

between studies collecting primary data, such as test-negative design studies, and studies that 

make use of secondary data, such as data from healthcare databases. These 



DRIVE 777363 – D4.1  

8 
 

recommendations serve as guidance for the ideal study through existing methods. Importantly, 

however, following these recommendations are not prerequisites for data analyzed within the 

context of DRIVE, nor do they consider novel or innovative methods.  

 

Chapter 2 Study designs reviews the different study designs that can be used for IVE studies 

and the pros and cons of each.  

Chapters 3 Exposure and 4 Outcome describe data required for exposure and outcome 

ascertainment and issues of misclassification. 

Chapter 5 Potential biases and confounders expected across different settings reviews 

potential biases and confounders, how they can be dealt with in the study design and what 

information is required to control them in the analyses.  

Chapter 6 Optimization of the value of microbiological and virological information describes 

characteristics of different laboratory tests, including their advantages and limitations.  

Chapter 7 Methods for rapid assessment of IVE deals with methods and considerations for 

carrying out real-time or rapid IVE assessment.  

Chapter 8 Data analysis for individual studies describes data analysis methods and 

considerations by study design. 

Chapter 9 Data pooling reviews the advantages and limitations of data pooling and describes 

one-stage and two-stage pooling. 

Chapter 10 Overall recommendations summarizes and integrates the guidance provided in all 

the chapters. 
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2 Study designs 

Observational IVE studies use a variety of designs, with the cohort design and the case-control 

design, specifically the test-negative control design, being the most commonly used designs. 

There are different variations to these two core designs, with different strengths and limitations. 

2.1 Cohort studies 

The cohort design is a commonly used and intuitive observational study design. 

 

 Cohort studies are intuitive, which makes it easy to communicate their results. Influenza 

incidence rates can be estimated using cohort studies, which makes these studies useful for 

disease burden studies. However, cohort studies have strict data requirements with data on 

exposure, outcome and covariates to be collected for the entire source population. Data 

collection can be secondary using existing health records or collecting new data specifically 

for the purpose of a study. For cohort studies using secondary data, typical data sources for 

cohort studies are linked (vaccination) registers and electronic healthcare records (EHR) from 

primary and secondary care. In these types of cohort studies, secondary data is used from 

pre-existing databases, and the study protocols cannot affect the way the data is primarily 

collected, but only which data should be used and how to analyze the available data. There 

may also be prospective cohort studies with primary data collection.  

 

Pros 

• Intuitive design, easier to communicate results 

• Can be conducted with secondary data (if of sufficient quality) 

Cons 

• Large operational sample (not necessarily a con when using secondary data) 

• Data on exposure, outcomes and potential covariates needed for the entire source 

population  

• May be subject to healthcare-seeking bias 

• Secondary data from pre-existing databases may be incomplete (e.g., in the case of 

influenza, lack of systematic laboratory confirmation) 

2.2 Case-control studies 

These designs compare vaccine exposure in cases to vaccine exposure in separate but 

‘comparable’ controls. The big advantage of case control studies over cohort methods is the 
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reduction in operational sample size, though choosing suitable controls can be tricky and may 

introduce a selection bias. In case-control designs, researchers identify subjects who 

experienced the outcome of interest (cases) and a comparison group of subjects who did not 

experience the outcome of interest (controls). 

 

Pros 

• Reduction in operational sample size compared to cohort studies with only minor loss 

of precision of estimates. 

Cons 

• Choice of adequate controls may be difficult, as the vaccine coverage in controls should 

be the same as in the population that gave rise to the cases 

• Selection bias may occur in the absence of sampling protocols 

 

2.3 Variants of the case-control design 

There are several variants to the classical case-control design. These designs are mainly 

different with respect to the way controls are selected.  

2.3.1 Test-negative method 

The test-negative design is the most frequently used design to estimate IVE. The design 

controls for selection bias due to healthcare-seeking behavior by restricting the source 

population to patients who seek medical care for a respiratory illness. Participants are selected 

among individuals who seek care for disease syndrome likely associated with influenza, such 

as acute respiratory illness (ARI), influenza-like illness (ILI) or severe acute respiratory 

infection (SARI), who are subsequently subjected to confirmatory testing [5, 6]. The cases are 

then chosen among the test positives and the controls among the test negatives. The method 

may be useful to minimize selection and ascertainment biases due to differences in (parental) 

attitude when seeking medical care and to physician differences in making decisions regarding 

laboratory diagnosis.   

Within Europe, the test-negative case-control design has been frequently used by the I-MOVE 

network and the ECDC [7, 8] and is also used for the assessment of COVID-19 VE. 

 

Pros 

• Reduction in healthcare-seeking bias 
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• Reduction in ascertainment bias when sampling protocols are used and also due to 

information collection on vaccination status prior to knowing the laboratory influenza 

test results 

• Reduction in outcome misclassification 

• Can be integrated in the existing influenza surveillance system 

• Reduction in operational sample size to select and include the controls 

• Can produce estimates comparable with those of case-control and cohort studies in 

the presence of a highly specific diagnostic test [9] 

Cons 

• Less suitable for secondary data unless sampling protocols are in place in routine care 

(TND nested in a clinical cohort) 

• Inappropriate control groups or screening methods could lead to biased results 

• Less intuitive to interpret the results 

2.3.2 Nested case-control studies 

Nested case-control studies are case-control studies undertaken within cohort studies. Each 

incident case is matched with a number of controls sampled from the risk set for that case. The 

risk set usually comprises individuals who have not experienced the outcome event at the time 

of occurrence of the case (incidence density sampling). Nested case-control studies potentially 

offer great reductions in costs and data collection and analysis efforts compared with the full 

cohort approach, with relatively minor loss in statistical efficiency [10].  

2.3.3 Case-cohort studies 

A case-cohort design is similar to a nested case-control design with cumulative sampling. 

Whereas in the nested case-control design, the controls are randomly sampled from the non-

cases, that is, those who did not get infected during the surveillance period, in the case-cohort 

design, controls are randomly sampled from the whole cohort, regardless of their disease 

status (case-base sampling). This has the advantage that in the case-cohort design the ‘rare-

disease assumption’ does not need to be made. Controls may include both cases and non-

cases. The case-cohort design was proposed by Prentice [11] to reduce the burden of data 

collection on covariates. However, as a result of the possible overlap between cases and 

controls, the statistical analysis of case-cohort data is much more complicated than the 

analysis of nested case-control data.  
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Pros 

• Rare-disease assumption not needed 

Cons 

• Requires complex statistical analysis  

2.3.4 Case-coverage method with external coverage cohort (screening method) 

The case-coverage or screening method uses data on the exposure prevalence in cases and 

in the coverage cohort, from which the cases originate [12]. The unadjusted VE is obtained as 

𝑉𝐸̂ 𝑆𝐶𝑅𝐸𝐸𝑁 = 1 − 𝑂𝑅̂𝑆𝐶𝑅𝐸𝐸𝑁 = 1 −
𝑝𝑑̂ (1 − 𝑝𝑑̂)⁄

𝑋̂ (1 − 𝑋̂)⁄
, 

with the odds ratio 𝑂𝑅̂𝑆𝐶𝑅𝐸𝐸𝑁 derived from the vaccine exposure prevalence among the cases 

(𝑝𝑑̂) and the, often externally derived, estimate of the vaccine coverage in the coverage cohort 

(𝑋̂). 

 

Both estimates 𝑝𝑑̂ and 𝑋̂ are often available from routine surveillance, making the case-

coverage method an inexpensive and ready-to-use method that might be useful to provide 

early effectiveness estimates or to monitor changes in effectiveness over time. Control for 

confounding is possible using stratified analysis, provided that the confounders are similarly 

measured for the cases and the coverage cohort. The method does not allow for uncertainty 

in the expected odds of exposure in the coverage cohort. This is immaterial when the coverage 

cohort is large, the major issue being the possible bias if cases are drawn from a population 

with a different vaccination profile from that of the coverage cohort. The method has been used 

to monitor IVE among older people in Germany [13]. 

Pros 

• Inexpensive and ready-to-use 

Cons 

• If multiple vaccines are used, it is not possible to determine IVE per brand/type, but 

only overall (unless brand-specific coverage data is available) 

• Bias may be introduced if cases are drawn from a population with a different vaccination 

profile from that of the coverage cohort  
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• Difficult to correct for confounding (as this would require knowledge of vaccine 

coverage in subgroups with the confounding factors of interest) 

2.4 Recommendations 

For studies using primary data to monitor IVE, we suggest to use the test-negative case-control 

design, with an appropriate choice of control group and implementation of sampling protocols 

[14].   

 

For studies using secondary data we suggest to use the cohort design.  
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3 Exposure 

In general, the exposure of interest is vaccination against influenza in the season under study 

(index season). The level of detail of the exposure definition depends on the study design and 

objectives. 

3.1 Influenza vaccines 

The recommendation on the composition of the seasonal influenza vaccines, i.e. the selection 

of the strains, is reviewed twice a year by the WHO, one for the Northern Hemisphere and 

another formulation for the Southern Hemisphere [15], to adapt to changes in the virus’ 

epidemiology. Influenza vaccines can be characterized by the influenza number of virus strains 

included, the vaccine type, the presence or absence of an adjuvant, the administration route, 

the dose and the production process [16] (Table 3.1). 

 

Table 3.1. Characteristics of seasonal influenza vaccines available in Europe in 2021/22  

Characteristic Options seasonal influenza vaccines available in Europe 

Valency Trivalent (two influenza A strains and one influenza B strain) 
Quadrivalent (two influenza A strains and two influenza B strains) 

Antigen preparation Inactivated/split 
Inactivated/subunit 
Live attenuated 

Adjuvant Without adjuvant 
With adjuvant 

Administration route Intramuscular 
Intranasal (live attenuated vaccines only) 

Antigen dose Standard 
High 

Production base Egg-based 
Cell-based 
Recombinant 

3.2 Influenza vaccination and its special features 

An influenza vaccination is the event that indicates the administration of an influenza vaccine. 

The person receiving the vaccination is thereafter considered vaccinated. The WHO 

recommends that vaccine-naïve children younger than nine years of age receive two doses 

during the season when they first receive an influenza vaccine [2]. The full schedule consists 

of a single dose for all others. However, the immune response may need up to two weeks to 

fully develop; therefore, a person is typically considered immunized only at day 14 post-

vaccination (after the last dose). The immune response does wane with time [2]. Thus, one 
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might want to take into account the time that has passed since vaccination when studying its 

effect.  

Influenza vaccination is recommended on an annual basis, especially to those at high risk [17]. 

As a consequence, people can be repeatedly vaccinated against influenza over several 

seasons.   

3.3 Data to be collected 

Resulting from 3.2, the vaccine brand(s) or type(s) (for studies on brand- or type-specific IVE) 

and vaccination date(s) of all influenza vaccinations given during the index season should be 

collected to fully capture a person’s vaccination history. Knowledge of the vaccine brand allows 

the deduction of the administered vaccine’s characteristics (see Table 3.1) and subsequently 

the estimation of brand-specific effects. In a small number of cases, when there is only one 

brand per type, vaccine brand and characteristics can be inferred from the type. The exposure 

data should include the vaccination date because it is important to know the timing of the 

vaccination within the season and in relation to the outcome. Influenza vaccination status in 

previous seasons is highly collinear with influenza vaccination status in the present season 

and is therefore not recommended to be included as a confounder, although it can be 

considered as a potential effect modifier. However, depending on the available data sources 

and the study design, the data requirements can be adapted and reduced. 

3.4 Data sources 

3.4.1 Administrative sources 

Computerized or paper-based vaccination registers (see also D2.4 [18]) originating from 

routinely recorded medical records might be the gold standard among the administrative 

sources providing individual-level data including the administered product and the vaccination 

date for all people covered by the register. 

Aggregated data, e.g. crude numbers of vaccine doses delivered in the target population, might 

also suffice for vaccination coverage estimation in a reference group of studies that utilize the 

screening method. However, unless vaccination coverage is brand-specific, brand-specific IVE 

cannot be calculated using the screening method in settings where multiple brands are used. 

Only in rare cases can the structure of the market help to retrieve the vaccination brand of all 

those who received influenza vaccination in a specific area, such as countries or regions where 

only one brand is procured through tenders (see also D3.1 [19], D3.3 [20] and Stuurman et al. 

[21]). 
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3.4.2 Self-reporting and contacting healthcare providers 

The initial information on vaccination can also be provided by the vaccinee. Self-reporting 

alone leads most likely to a dichotomous vaccination status without any details concerning the 

administered product or the exact vaccination date. Such data might suffice in studies that do 

not focus on brand-specific effects and only require the chronological order of exposure and 

outcome to be known.  

Vaccination cards held by the vaccinee might improve the information available to be collected 

through surveys and self-reporting, as could contacting the pharmacy or physician that 

provided the vaccine [2, 22]. 

3.5 Common exposure definitions 

Common exposure definitions frequently used by the ECDC [23, 24], the I-MOVE/I-MOVE+ 

network [25, 26], and elsewhere are summarized hereafter. 

The above protocols agree that an individual is considered ‘vaccinated’ starting from >14 days 

after the last vaccination [23-26]. The first 14 days from vaccination are either considered 

‘unvaccinated’ (leading to two distinct exposure levels) [23-25], or they are considered ‘partially 

vaccinated’ (leading to three distinct exposure levels). In DRIVE, the latter was used. In the 

first two seasons, ‘partially vaccinated’ individuals were considered in sensitivity analyses; from 

2019/20 onwards, they were excluded.  

Depending on the study design, an individual’s exposure status might vary over time in follow-

up and, as such, may be considered as a time-dependent variable (cohort studies) [23] or 

assessed only once for the time point of the outcome’s occurrence in case-control studies and 

its variants [24].  

Depending on whether or not they received influenza vaccination in a prior season, young 

children may require two doses of influenza vaccine. To operationalize this in the absence of 

a lifelong influenza vaccination history, in DRIVE (from 2020/21 onwards), children <9 years 

for whom the record showed that they received two doses in the season were only considered 

vaccinated 14 days after the last dose. In case the records showed that a child <9 years only 

received one dose, it was assumed that the child was vaccinated.  
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3.6 Exposure misclassification 

Whichever data source is available or has been chosen, misclassification can occur. The 

consequences of exposure misclassification in terms of information bias are discussed in 

Chapter 5. 

3.6.1 Adequacy of data source 

When using administrative sources that record the presence of vaccination but not a potential 

absence, it must be ensured that they are complete and cover the entire population of interest 

(i.e. the population from which cases and non-cases are retrieved). Otherwise, the part of the 

population not or incompletely reflected in the data is by default assumed to be not vaccinated. 

In case of aggregated vaccination information (when applying the screening method), it must 

be further guaranteed that this information originates only from the population of interest to 

avoid misclassification towards a wrongly increased number of vaccinated subjects. 

3.6.2 Data entry errors 

As with any records, vaccination registers based on routinely entered medical records may 

contain data entry errors and consequently misclassification. Inaccurate records concerning 

the vaccinated subject, the administered product, or the vaccination date can lead to wrongly 

classifying study subjects as either not vaccinated or vaccinated with a certain vaccine during 

the study period. 

Incomplete or inaccurate data entry may result in misclassification. As the vaccination status 

in computerized vaccination registers is assumed to be “not vaccinated” and a single typo can 

break the automated process of correctly identifying the vaccination event (vaccinated subject, 

administered product, vaccination date) and cause misclassification, it seems more likely to 

classify the vaccinated as not vaccinated (rather than equally classifying the vaccinated as 

non-vaccinated and vice versa)[27].   

3.6.3 Recall bias 

Last but not least, self-reporting carries the risk of misclassification. The accuracy or 

completeness of recalling a subject’s vaccination history can vary e.g. depending on the study 

subject’s age and time since vaccination and might be further influenced by the outcome 

status, especially if the subject or researchers conducting the interviews are not blinded, or if 

the outcome is related to compensations or other benefits. In the context of brand information, 
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it may also be not known by the vaccinee. Complementing or verifying self-reported information 

through vaccination cards, contacting healthcare providers, or administrative sources reduces 

this risk. 

3.7 Recommendations 

The following data on exposure should be collected, both for studies collecting primary data 

and those using secondary data:  

 

• Vaccine brand(s) or type (s) of all influenza vaccinations given during the index season 

(i.e. the season for which IVE is being estimated); for studies on brand- or type-specific 

IVE 

• Vaccination date(s) of all influenza vaccinations given during the index season, or if not 

available, the sequential order and relative timings of exposure and outcome 

• How the vaccination status was ascertained and whether it was confirmed e.g. through 

medical records 
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4 Outcome 

IVE usually refers to effectiveness in preventing influenza infection. Hence, in IVE studies, the 

primary outcome of interest is infection with an influenza virus, which can only be accurately 

confirmed by a laboratory test. Occasionally other outcomes than laboratory-confirmed 

influenza infection are used. Other outcomes are employed for two reasons: the outcome may 

be life-threatening and therefore worth preventing, or the outcome is used as a surrogate 

endpoint for influenza infection. 

4.1 Common outcome definitions 

Outcome definitions can be specific or non-specific.  

The specific outcomes in IVE studies require laboratory-confirmed influenza infection [2, 28]. 

According to the EU influenza case definition, a laboratory confirmation requires the ‘isolation 

of influenza virus from a clinical specimen’, the ‘detection of influenza virus nucleic acid in a 

clinical specimen’, the ‘identification of influenza virus antigen by DFA test in a clinical 

specimen’, or an ‘influenza-specific antibody response’ [29].  The currently available laboratory 

tests used to determine whether or not influenza infection has occurred are described in detail 

in Chapter 6.  

An isolated strain can match with one of the strains included in the vaccine or not. If only 

infections with matching strains are considered, the IVE being estimated is that against 

matching strains; if all infections are considered, matching and non-matching, the IVE being 

estimated is that against any circulating strain. IVE frequently varies between strains; 

therefore, IVE estimates are often reported by influenza A subtype or by influenza B lineage 

[30].   

Laboratory-confirmed influenza infections in different settings, reflecting increasing levels of 

severity, may be considered, such as influenza in primary care, influenza requiring 

hospitalization, and admission to an intensive care unit (ICU) following an influenza infection. 

Testing for influenza is usually only done when a subject shows signs and symptoms of 

influenza, frequently used clinical case definitions are listed in Table 4.1. This means that non-

symptomatic cases go undetected.  

Another non-specific outcome in observational studies has been death or all-cause mortality 

[2]. The problem with non-specific outcomes is the interpretation of the IVE. With a specific 

outcome, the maximum IVE is 100%, whereas with a non-specific outcome, the maximal IVE 

is less than 100% and usually unknown [28]. Nevertheless, even a low IVE can have a large 
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public health impact if the outcome of interest is serious or very frequent. Studies of IVE against 

non-specific outcomes must meet several demanding quality criteria, including a large sample 

size to achieve a precise estimate that can be clearly distinguished from the null and elaborate 

adjustment for confounders, which has been demonstrated to be an issue in several studies 

[2].  

Table 4.1. Clinical case definitions of ILI and SARI by WHO and EU 

Outcome Institution Case definition / clinical criteria 

ILI WHO • ‘an acute respiratory illness with a measured temperature of ≥38°C and 
cough, with onset within the past 10 days’ [31]   

EU • a ‘sudden onset of symptoms’ and  

• ‘at least one of the following four systemic symptoms: fever or 
feverishness, malaise, headache, or myalgia’ and 

• ‘at least one of the following three respiratory symptoms: cough, sore 
throat, or shortness of breath’ [29]  

SARI WHO • ‘an acute respiratory illness with a history of fever or measured fever of 
≥38°C and cough, with onset within the past 10 days, requiring 
hospitalization’ [31].  

EU • a ‘sudden onset of symptoms’ and  

• ‘at least one of the following four respiratory symptoms: cough, sore 
throat, shortness of breath, or coryza’ and  

• ‘a clinician’s judgement that the illness is due to an infection’ [29]. 

The influenza disease outcome has also been defined for surveillance purposes using 

diagnostic codes such as ICD-9, ICD-10, ICPC-2, or other codes such as Read Codes in the 

UK, which are utilized in many patient information systems to classify a patient’s diseases, 

disorders, injuries, and other health-related conditions. Accordingly, a hospitalization or a 

medical encounter would be considered to be due to influenza e.g., in presence of the ICD-10 

codes J09, J10, J11, and all their subclasses [32].  

For case-control and test-negative design (TND) studies, EMA guidance states laboratory-

confirmed, medically attended influenza should be the primary outcome; based on the study 

setting (general population or hospital), secondary outcomes of interest may include 

pneumonia, influenza-related hospitalizations (influenza related or associated with respiratory 

or cardiac disease), or death [3]. For cohort studies, EMA guidance states outcome of interests 

may include medically-attended respiratory infection (MAARI), medically-attended ILI, all 

cause deaths, respiratory deaths, hospitalizations for pneumonia and influenza, 

hospitalizations for all respiratory conditions, laboratory-confirmed cases of 

MAARI/hospitalized pneumonia, and influenza and ICU admissions [3]. 
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Non-specific outcomes should be employed when the outcome is serious or life-threatening 

and worth preventing. The endpoint should always be clearly described and non-specific 

outcomes should not be used as a surrogate endpoint for influenza because in that case the 

IVE against infection will be underestimated [28]. 

4.2 Data to be collected and data sources 

4.2.1 Challenges 

In practice, it is challenging to find a specific outcome definition that covers the whole disease 

burden due to influenza. The severity of the symptoms can vary a lot, ranging from mild illness 

treated solely at home to very severe illness treated in hospitals' intensive care units and 

possibly leading to death. Further, influenza can make subjects more susceptible to secondary 

bacterial pneumonia and acute myocardial infarction or exacerbate chronic diseases. Then 

again, patients infected with other respiratory pathogens also circulating during the influenza 

season might present similar clinical syndromes [2]. 

4.2.2 Primary data to be collected 

Consequently, aligning a non-specific clinical outcome definition like ILI or SARI with a 

laboratory test result is strongly recommended. The following data should be collected to 

optimally describe the outcome test-positive influenza, medically attended ILI or SARI across 

all study designs:  

- the symptoms forming the clinical syndrome of ILI or SARI, including the information 

whether hospitalization or intensive care treatment was required,  

- the date of symptom onset,  

- the date the respiratory specimen was taken,  

- and the detected influenza type and subtype (if possible).  

Such data could either arise from an active collection as part of a study designed to estimate 

IVE (e.g. TND or prospective cohort study); data sources for this could include medical records 

kept in hospitals or by general practitioners (GPs) or from surveillance/sentinel systems. 

4.2.3 Secondary data collection 

Nevertheless, this recommendation does not intend to generally exclude all other data 

collections from IVE estimations, especially from cohort studies through which less-specific 
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outcomes may be explored, although they might not provide as sensitive or specific information 

as indicated above. On the one hand, statutory infectious diseases registers covering clinically- 

and laboratory-confirmed influenza cases might provide outcome data that is less sensitive 

than that obtained through primary data collection (as not all potential cases will be routinely 

tested) but still highly specific. On the other hand, diagnostic codes or data on antiviral drug 

prescriptions can be considered for deriving non-specific proxies for the outcome [22, 32]. 

Accordingly, information on the diagnostic code or antiviral drug describing the disease entity 

and the date of diagnosis or prescription approximating the disease onset should be collected. 

However, the resulting IVE estimates must be interpreted carefully (see 4.3 and 5.2.17). 

Additionally, outcomes that are not a proxy for laboratory-confirmed influenza (e.g. all-cause 

pneumonia) may be considered. 

4.2.4 Recurrent infections 

A second influenza infection in the same subject in the same season is rare but might happen. 

In IVE studies, only the first infection is counted. The broader the outcome, the more frequently 

subjects might qualify again as cases in the same study. Especially when diagnostic codes or 

prescriptions are used to determine the outcome, an additional definition for a disease episode 

is required to distinguish frequently repeated events that are likely to belong to the same 

infection and sparse events that represent separate infections [6, 7]. The data collection should 

comprise all incident cases. While a physician involved in the collection of primary data might 

be able to differentiate between an incident and a prevalent case, the timely distinction 

between these two is difficult when using secondary data, as it strongly depends on the 

underlying coding and recording practices.  

4.3 Outcome 

misclassification 

Whichever outcome definition and data source are chosen, misclassification can occur. The 

consequences of outcome misclassification in terms of information bias are discussed in 

Chapter 5. 

4.3.1 Imperfect laboratory result 

Imperfect laboratory test 

Most of the laboratory tests currently available for detecting influenza infections are highly 

sensitive and highly specific but not perfect (see 6.1 and 6.2). Imperfect sensitivity bears the 
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risk of misclassifying infected subjects as non-cases, but this will not lead to bias, unless the 

sensitivity of the test differs between vaccinated and unvaccinated subjects. Imperfect 

specificity bears the risk of wrongly classifying non-cases to be influenza-positive and may 

lead to serious underestimation of the vaccine effectiveness. 

Lag time between symptom onset and specimen 

Typically, influenza virus shedding starts a day before symptom onset and decreases 

substantially four days after symptom onset [33]. If a respiratory sample is taken thereafter, 

the virus may no longer be detectable, which introduces misclassification. Shedding peaks on 

the first 1-3 days of clinical illness [34-36]. Two studies on naturally acquired infection found 

the viral load of influenza B to be high for a longer time than for influenza A [35, 36].  

Younger age has been associated with increased viral shedding (<16 vs. ≥16 years [37]; 0-5 

vs. 6-15 vs. 16-64 years [38]), although this effect has not been consistently demonstrated 

across studies [36, 39]. No effect of vaccination on viral shedding among influenza cases was 

found [36, 37]. A systematic review on influenza A A(H1N1)pdm09 virus shedding found that 

the duration of shedding increased with increasing disease severity and decreased by timely 

antiviral treatment [39]. 

Swabs  

Preferred swabbing sampling for influenza detection are nasopharyngeal aspirates and 

washed, followed by nasopharyngeal swabs and mid-turbinate swabs; less preferred are throat 

swabs [40].  

Use of antivirals 

Antivirals like the neuraminidase inhibitors oseltamivir and zanamivir and the M2 inhibitors 

amantadine and rimantadine can be used to prevent influenza (e.g. as prophylaxis for 

individuals exposed to influenza virus when admitted to hospital) and for the treatment of 

influenza in order to mitigate the associated complications [41].  

The use of antivirals can reduce the duration of viral shedding [39]; consequently, respiratory 

samples taken after the start of antiviral treatment may already be negative, leading to 

misclassification. 

4.3.2 Healthcare-seeking behavior 

Influenza diagnosis can only be confirmed after a healthcare visit, and influenza infection 

cannot be ascertained in persons who do not seek care, yet the latter are assumed to not have 
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been infected in cohort and classic case-control studies [6]. For this reason, it is important to 

specify that the outcome is medically attended influenza infection. 

4.3.3 Adequacy of data source 

If routinely recorded data on laboratory-confirmed influenza cases, diagnostic codes or 

prescriptions are collected, their use in cohort studies estimating IVE must be reviewed 

carefully. In analogy to exposure data originating from administrative sources, it must be 

ensured that the records cover the entire population of interest because study subjects without 

an entry related to the outcome of interest are considered disease-free. However, if the chosen 

data source’s sensitivity to detect the outcome is imperfect and influenced by a study subject’s 

vaccination status (e.g. because of differences in healthcare-seeking behavior or differences 

in the physicians' testing and diagnostic preferences), differential outcome misclassification 

occurs. Consequently, the proportion of diseased people misclassified as non-cases might 

differ between the different exposure groups. 

4.3.4 Data entry errors 

Healthcare databases based on routinely entered medical records are prone to data entry 

errors and, consequently, non-differential misclassification. Differential misclassification linked 

to the patient's risk status can also occur, as it cannot be excluded that the content of the 

information entered and the scrutiny to encode this information is the same for an otherwise 

healthy subject compared to a patient with underlying medical conditions. 

4.4 Recommendations 

In studies collecting primary data, the recommended outcome is laboratory-confirmed, 

medically attended influenza. We suggest the collection of the following data: 

• Symptoms forming the clinical syndrome of ILI or SARI, including whether 

hospitalization or intensive care treatment was required,  

• Date of symptom onset,  

• Date the respiratory specimen was taken,   

• Laboratory confirmation yes/no, and if yes, influenza type and preferably also subtype/ 

lineage  
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In studies utilizing secondary data, e.g. from existing healthcare databases, the recommended 

outcome is laboratory-confirmed influenza, overall or stratified by clinical condition. However, 

this recommendation does not exclude the use of syndromic, code-based or non-specific 

outcome definitions discussed in 4.1, either in association with a positive influenza test or 

alone. We suggest the collection of the following data points: 

• Clinical condition (if applicable), 

• Date the respiratory specimen was taken, 

• Detected influenza type and preferably also subtype/ lineage for laboratory-confirmed 

influenza  
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5 Potential biases and confounders expected across 
different settings 

This chapter describes biases and confounders that are important to IVE studies. A systematic 

literature review on confounding and bias has been performed as part of WP2 [42]. A re-

analysis of the DRIVE data from 2018/19 and 2019/20 to study the impact of specific 

confounders is in progress.  

5.1 Definitions 

A bias is a systematic error that leads to an incorrect effect estimate of the exposure on the 

outcome. Examples are selection bias and confounding. 

A confounder is a variable that influences both the exposure and the outcome. Confounding 

can be subdivided into positive confounding, which leads to bias away from the null hypothesis 

(higher VE estimate), and negative confounding, which leads to bias toward the null hypothesis 

(lower VE estimate).   

An effect modifier is a variable that differentially (positively or negatively) modifies the observed 

effect of the exposure on the outcome. Different groups have different risk estimates when 

effect modification is present [43]. 

It is noted that certain factors may both act as a confounder and effect modifier (see 5.3.3).  

5.2 Biases and confounders 

Multiple biases and confounders may be present. In TND studies, the confounders most 

frequently adjusted for are age, sex, calendar time and chronic conditions [44]. 

5.2.1 Health status  

Persons who receive influenza vaccines may differ in important ways from those who do not 

receive them, such as in the presence of chronic underlying conditions (e.g. chronic obstructive 

pulmonary disease, cardiovascular diseases, metabolic disorders, renal diseases, treatment-

induced immunosuppression and disease-induced immunosuppression) and frailty. 

Here we differentiate between confounding by indication and the healthy vaccinee bias (which 

includes confounding by contraindication).  

5.2.1.1 Confounding by indication (overall) 

Confounding by indication occurs when a symptom or sign of disease is judged as an indication 
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for a given vaccine and is therefore associated with both the vaccine and a higher probability 

of an outcome related to the disease for which the vaccine is indicated or a specific brand is 

given [45]. In the case of influenza vaccination, patients who have underlying chronic 

conditions are more likely to be vaccinated as they are at higher risk for (severe) influenza 

disease, and risk groups are part of the vaccine recommendations; this can lead to a lower VE 

estimate [46]. Underlying conditions of interest include chronic obstructive pulmonary disease 

(COPD), cardiovascular diseases, metabolic disorders, renal disease, treatment-induced 

immunosuppression and disease-induced immunosuppression [47].  

5.2.1.2 Healthy vaccinee bias and frailty bias  

The healthy vaccinee bias and the frailty bias have the opposite effect of confounding by 

indication, i.e., vaccinated individuals may be healthier than unvaccinated individuals, leading 

to a higher VE. 

 

Healthy vaccinee bias 

Risk groups are part of the vaccine recommendations and are more prone to receive 

vaccination compared to healthy subjects (see Section 5.2.1.1). However, within these groups 

recommended for vaccination (e.g., those based on age), those with a healthier lifestyle may 

be more likely to accept influenza vaccination.  

 

Frailty bias 

Vaccine coverage has been found to be low in frailest patients, i.e. those with a low functional 

status and a high predicted probability of death during the upcoming influenza season [48, 49].  

Healthcare providers may be reluctant to vaccinate such patients and likewise patients may 

“give up on preventive measures” [48]. Consequently, there may be relatively fewer severely 

ill patients in the exposed group [47, 49].  

5.2.1.3 Confounding by indication (type- or brand-specific)  

Brand-specific IVE studies from settings in multiple countries will be pooled. Vaccine type 

recommendations may differ between countries. For example, country 1 may use the non-

adjuvanted trivalent vaccine for all adults, whereas country 2 may prescribe the adjuvanted 

trivalent vaccine to a specific risk group and non-adjuvanted to the rest of the population. 

Furthermore, a healthcare worker may decide to vaccinate with a specific brand (e.g., an 

adjuvanted vaccine, an intradermal vaccine, a quadrivalent vaccine) because he/she thinks a 

particular patient requires additional protection. This may result in potentially important 

differences between the exposed groups that affect the pooled VE estimate. Knowledge of 
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vaccine recommendations or prescription practices across settings is necessary (also refer to 

WP2.2 and WP3.1). Furthermore, certain clinical conditions associated with the outcome may 

also be associated with the receipt of specific influenza vaccine types or brands and may cause 

confounding by indication, as differences between VE estimates may be partially due to 

underlying population characteristics rather than to true differences between vaccine types or 

brands [50-53]. This is in part a consequence of influenza recommendations that tailor vaccine-

type recommendations for specific risk groups, particularly based on age [54]. In the DRIVE 

2020/21 season, this was the case in Austria, Finland, Italy, Spain and the UK. In addition, a 

GP survey conducted in DRIVE concluded that whilst a GP’s choice of vaccine type for an 

individual patient is primarily driven by vaccine type availability, if GPs had a choice, older 

patients and patients with multiple comorbidities were more likely to be prescribed the 

adjuvanted vaccine [53].  

5.2.2 Selection bias 

Selection bias occurs when subjects are differentially enrolled in the study or analysis, or data 

is differentially collected based on their exposure or outcome status.  

5.2.2.1 Selection bias based on vaccination status 

In IVE studies, this can happen when not all subjects with acute respiratory illness are equally 

likely to be tested for influenza, especially in settings where testing takes place at the clinician’s 

discretion. For example, vaccinated subjects may less frequently be tested for influenza (due 

to a perceived lower chance of influenza infection), which would lead to a higher VE estimate.  

5.2.2.2 Selection bias based on outcome  

Alternatively, the exact presentation of acute respiratory illness may – in the absence of clear 

sampling protocols - influence the clinician’s decision to order influenza testing, which can 

either lower or increase the VE estimate [2].  

Furthermore, in prospective studies with active enrolment that requires informed consent (i.e., 

those taking place outside the context of routine surveillance or medical practice), individuals 

who are too ill to give consent (e.g., too acutely ill or because of worsened chronic conditions) 

may not be enrolled, thereby biasing the outcomes captured to less severe disease.  

In addition, subjects that do not fulfil the ILI/SARI definitions are excluded from TND studies, 

thus excluding potential cases, such as e.g., those (elderly people) with clear systemic 

symptoms and even radiologically confirmed pneumonia but without any signs of respiratory 

symptoms according to the ECDC ILI definition. 
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5.2.3 Healthcare-seeking behavior 

Not all subjects are equally likely to seek care and hence to be diagnosed. Healthcare-seeking 

behavior is usually associated with exposure and the outcome (e.g., vaccinated persons may 

be more likely to seek medical care when diseased), and it may therefore lead to confounding. 

Multiple factors may influence healthcare-seeking behavior, ranging from funding of the 

healthcare system to personal factors and disease severity.  

Disease severity may be affected by exposure status (e.g., vaccinated persons may have less 

severe disease, reducing their likelihood to seek care) and acute respiratory infection (ARI) 

etiology. If ARI severity differs by etiology, this might differentially impact the propensity to seek 

healthcare between cases and controls in a test-negative study [5].  

Although healthcare-seeking bias will be present in each setting, the bias is likely stronger in 

a GP setting than a hospital setting, as patients with severe disease are more uniformly likely 

to seek care.   

5.2.4 Information bias  

Information bias arises when incorrect information about a variable is collected [22]. The most 

important types of information bias are exposure misclassification and outcome 

misclassification, although information bias is also applicable to other variables, such as 

confounders and covariates.  

Exposure or outcome misclassification can be differential or non-differential. Misclassification 

is non-differential when the bias is the same for all subjects, regardless of exposure or outcome 

status. Non-differential misclassification usually causes a bias towards the null, leading to a 

lower VE. Misclassification is differential when the bias differs between exposed and non-

exposed subjects or between subjects with and without the outcome. Differential 

misclassification can lead to bias towards or away from the null. Misclassification bias in 

vaccine effectiveness studies is discussed in detail by De Smedt et al. [55]. 

5.2.4.1 Misclassification of exposure 

As described in more detail in Section 3.3, exposure misclassification can occur due to an 

inadequate data source, data entry errors and recall bias.  

Bias in the exposure due to inadequate data source or data entry errors could be non-

differential or, in rare cases, differential. Thus, in most cases, it is expected to lower the VE. 

Data entry errors are most likely to result in subjects erroneously classified as unvaccinated, 

leading to a lower VE.  

Recall bias can be differential or non-differential, therefore, bias can also go either way here.  



DRIVE 777363 – D4.1  

 

30 
 

5.2.4.2 Misclassification of outcome  

As described in more detail in Section 4.3, outcome misclassification can occur due to 

imperfect laboratory tests, lag time between symptom onset and specimen collection, lack of 

healthcare seeking (in cohort studies), use of antivirals, an inadequate data source and data 

entry errors. 

Outcome misclassification due to imperfect diagnostic tests or laboratory procedures, such as 

lag time between symptom onset and specimen collection, use of antivirals and data entry 

errors, is most likely to be non-differential and thus underestimating VE. This can be overcome 

by using more reliable test or harmonizing the sample collection and laboratory testing 

procedures. Another alternative is to apply bias correction methods for TND studies that have 

been developed to address potential misclassification bias due to imperfect tests [56]. 

Bias in the outcome due to an inadequate data source can be non-differential or differential. In 

cohort studies conducted in the absence of a protocol or other measures ensuring a balanced 

case detection rate among the exposed and unexposed, differential outcome misclassification 

bears the risk of either under- or overestimating VE. 

5.2.5 Age 

Age is associated with both the exposure (some risk groups recommended for vaccination are 

defined by age [57]) and the outcome (the very young are more likely to be infected due to lack 

of immunity, and very young and elderly people are more likely to suffer severe influenza 

infection or to develop complications [58]). It is recommended that age is treated as an effect 

modifier (see Section 5.3.1); however, within each stratum, age can be treated as a 

confounder.  

5.2.6 Gender/sex  

Men and women may have different healthcare-seeking behaviors, resulting in differences in 

influenza vaccine uptake and likelihood of medical consultation for influenza disease.  

For example, a study conducted in Spain found that, within the influenza vaccine 

recommended risk group, vaccine coverage was lower among women than among men [59].  

Alternatively, in countries where healthcare workers are offered near compulsory influenza 

vaccinations or where pregnancy is considered an indication, women may have higher 

coverage.  
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5.2.7 Pregnancy 

In many countries, pregnant women are recommended influenza vaccination. Furthermore, 

changes to the immune system, heart, and lungs during pregnancy make pregnant women 

more susceptible to severe disease [60]. 

5.2.8 Smoking behavior (or parental smoking behavior) 

Smoking may be positively associated with vaccination (e.g. smokers may be more likely to be 

affected by chronic diseases and, therefore, belong to the risk groups particularly eligible for 

influenza vaccination) or negatively associated with vaccination (e.g. smokers may be more 

prone to ignore health-related recommendations). Furthermore, smoking may be associated 

with the outcome (e.g. disease may be more severe).  

For children, parental smoking status may be considered. Wilson et al. showed that children 

hospitalized for influenza had more severe disease if they had been exposed to second-hand 

smoking [61].  

5.2.9 Socioeconomic status or applicable proxy 

The socioeconomic status is a relevant variable to indicate access to health services. It may 

be associated with exposure and access to influenza vaccination in countries where influenza 

vaccination is not free, and with medically attended outcomes in countries where healthcare is 

not free, or where insurance-based systems run in parallel to public care.  

5.2.10 Prior exposure to influenza vaccination and influenza infection 

An important confounder is the prior exposure history of a patient, which includes both prior 

infection and prior vaccination status.  

5.2.10.1 Prior influenza vaccination  

Prior influenza vaccination may be a confounder of IVE when influenza vaccination in the 

current season is associated with vaccination history and when vaccination modifies the risk 

of natural infection in the following season [62]. Studies have found both positive and negative 

interference of repeated influenza vaccination on IVE [63], and this may differ by season.  

The antigenic distance hypothesis proposes that negative interference may occur if the 

consecutive vaccines are antigenically similar, and antibodies produced in the past season 

may neutralize vaccine antigens of the subsequent year’s vaccine before it can trigger a full 

immune response, especially if the new circulating strain is antigenically different [64]. 
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Conversely, positive interference may occur when the antigenic distance between the first 

vaccine and the new circulating strain is small, and pre-existing antibodies are boosted by the 

response to the vaccine, helping to clear the new virus [64]. Furthermore, prior vaccination 

may be protective because of persisting vaccination immunity, or it may modify the risk of 

natural infection because of a lower previous risk of natural infection [62]. IVE may be 

influenced by vaccination patterns over at least several seasons [65] and lower against 

A(H3N2) virus [66] [67]. 

Prior influenza vaccination is frequently predictive of influenza vaccination in the current 

season; therefore, collinearity may be a problem when including prior influenza vaccination in 

the statistical model as a confounder [68]. 

5.2.10.2 Prior influenza infection  

Prior influenza infection can influence the choice to receive the influenza vaccine in the current 

year and lead to a degree of existing immunity against influenza. Exposure to the virus is 

believed to induce lifelong cellular and humoral immunity that not only protects against infection 

by the original infective strain but may also provide cross protection against antigenically 

similar strains. This can lower the VE estimate in the current year. For example, Saito et al. 

found a profound protective effect of medically attended influenza A infection in the prior 

season [69].  

In the scientific literature, the prior influenza infection status is rarely considered because of 

the difficulty to collect accurate information. Furthermore, it is unknown for how many previous 

years this information should ideally be collected. 

Little research has been done on the interplay between prior influenza infection and prior 

vaccination and its effect on IVE [69].  

5.2.11 Concomitant administration of COVID-19, pneumococcal, Herpes zoster and childhood 
vaccines 

The likelihood of receiving an influenza vaccination is higher among recipients of other 

vaccines because of behavioral aspects and the patients’/parents’ opinion concerning 

vaccines and access to healthcare. The COVID-19 may have adjusted the behaviors and 

attitudes toward vaccination [70], but accounting for this component is important as this can 

lead to confounding, particularly in TND studies where patients with non-influenza ILI/SARI are 

included as part of the test-negative control group. This is particularly of interest starting from 

the 2021-2022 influenza season with respect to the COVID-19 vaccination, as the inclusion of 

SARS-CoV-2 controls in influenza TND studies may lead to underestimated IVE estimates 
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[71]. 

Younger children that are recommended for influenza vaccination may receive their 

recommended childhood vaccinations potentially alongside the influenza vaccine; in some 

elderly cohorts, the influenza vaccine is co-administered in the same healthcare visit with the 

pneumococcal vaccine, because of overlapping recommendations for the two vaccines. Up-

to-date pneumococcal vaccination can affect the occurrence of secondary bacterial infectious 

complications of influenza and is therefore an important confounder for non-specific outcomes; 

it would lead to a higher VE estimate. Additionally, it is important to distinguish between the 

23-valent pneumococcal polysaccharide vaccine (PPS23) and the 13-valent pneumococcal 

conjugate vaccine (PCV13) because of their differences in effectiveness against pneumonia.  

5.2.12 Statins  

Recent studies suggest statins may impair the antibody response and thereby reduce vaccine-

induced protection [72]. Studies have shown reduced immune response to influenza vaccine 

[73], reduced VE to medically attended acute respiratory infection [74], and reduced IVE to 

some (but not all) influenza types/subtypes [72]. On the other hand, statins have been 

suggested to have a protective effect against infections [75]. 

5.2.13 Residence in long-term care facility 

Residence in a long-term care facility (LTCF) may be associated with vaccination (e.g. 

residents of long-term care facilities are often vaccinated to minimize influenza outbreaks in 

the facility) and with the outcome (e.g. disease may be more severe because of underlying 

conditions, and influenza attack rate may be higher than in the community).  

In relatively closed communities such as LTCF, disentangling the effect of individual protection 

and herd immunity caused by both caretakers and visiting relatives being vaccinated may be 

challenging [2]. For such reasons, in DRIVE, residence at long-term care institutions was an 

exclusion criterium. 

5.2.12 Perinatal conditions  

In addition to the variables for health status described above, a health status indicator for 

children, based on birth weight and maturity at birth, as well as some other perinatal or 

congenital conditions (e.g. Apgar score or Down syndrome), is relevant for children. The cut-

off age depends on the nature and severity of the condition. 
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5.2.14 Child’s adherence to the local childhood vaccination program  

In case that influenza vaccine is recommended for a child, either because the child falls within 

a risk group recommended for influenza vaccination or the country recommends influenza 

vaccine for all children, adherence to the local childhood vaccination program in general is 

likely positively associated with influenza vaccine reception and healthcare-seeking behavior. 

5.2.15 Waning immunity 

The intra-seasonal waning of protection against influenza vaccination has been demonstrated 

through lower VE and geometric mean titers with increasing time since vaccination [76, 77]. 

The waning of immunity may occur at different rates for different vaccine components [76, 78] 

and may be of particular concern in adults aged 65 years and above [79]. Recent work has 

explored bias in influenza vaccine waning studies [80, 81]. 

5.2.16 Infection pressure  

Influenza infection pressure varies among people. Factors associated with high infection 

pressure include being a healthcare worker, army conscript, childcare worker, or 

institutionalized individual (e.g., LTCF, prisons), and for children, the number of siblings.  

In certain cases, vaccinated and non-vaccinated subjects may have different contact patterns 

leading to a differential infection pressure [6]. For example, healthcare workers, who are 

frequently offered occupational influenza vaccine, may have increased exposure to the 

influenza virus through contact with patients seeking care for influenza infection, compared to 

the general population. In this example, differential infection pressure would lead to a lower 

VE estimate. 

5.2.17 Climatic factors 

Influenza transmission is affected by climatic factors. Cold and dry conditions have been found 

to favor influenza transmission [82-85].  

Lowen et. al propose several mechanisms to explain the influence of humidity and temperature 

on influenza [85]. First, the host may be more susceptible to respiratory virus infections as a 

result of desiccated nasal mucosa due to breathing dry air. Second, viral stability has been 

found to be very high at low relative humidity. Third, at low relative humidity, respiratory 

droplets carrying the influenza virus are small (as water evaporates quickly), allowing them to 

remain airborne for a longer time, increasing the chance of transmission of the virus. Finally, 

viral shedding increases at low temperatures. This could be due to reduced viral clearance as 
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a result of a slower mucociliary activity or increased viral stability. 

5.2.18 Virus characteristics 

Factors pertaining to the virus are virus virulence and level of antigenic match between the 

vaccine strain and the circulating strain.  

Vaccine effectiveness is lower in seasons with a mismatch [86, 87]. Early news of a mismatch 

with the vaccine could potentially influence the level of vaccine uptake in a population. 

Furthermore, intra-seasonal antigenic drift may cause variations in vaccine effectiveness within 

the season. 

5.3 Effect modifiers 

5.3.1 Age 

Due to immunosenescence, which refers to the gradual decline of the immune system brought 

naturally by age, vaccination in older adults is expected to lead to a lower immune response 

than in younger adults [88]. Furthermore, older adults are usually prone to develop more 

severe influenza disease or complications thereof. Both of these factors lead to lower VE 

estimates in older age groups [2].  

Stratification of the data into age groups is advised. Harmonizing the age categories used in 

the analysis across studies will be crucial for the pooled analysis.  

5.3.2 Immunosuppressed/ immunocompromised patients 

Patients who are immunosuppressed or immunocompromised, whether as a result of a 

disease or a treatment, are at risk of complicated influenza [89]. Although patients may still 

benefit from a degree of protection against severe disease, the VE in this population is lower 

than in patients who are not immunosuppressed/immunocompromised. 

5.3.3 Others 

In addition to age, confounders listed above may sometimes be considered effect modifiers, 

such as sex [90-92], prior vaccination/infection, statin use [93] or health status (frailty). Frailty 

can be associated with vaccine effectiveness, especially in older adults and in risk groups. 

McGrath et al. state that they could not control healthy-user bias through statistical adjustment 

and therefore performed sample registration, which reduced much of the bias [94]. 
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5.4 Controlling for bias and confounding  

The effect of bias and confounding can be controlled at the study design level or in the analysis.  

Table 5.1 shows what information would be required to control in the analysis for each bias or 

confounder described above and how it can be controlled in the study design.  

It will not always be feasible to address each type of bias or confounding. If data has not been 

collected, it is impossible to account for it in the analysis. For example, if the lag time between 

symptom onset and specimen collection has not been collected as part of routine clinical 

practice, this information will not be available from administrative databases and, 

consequently, it will be impossible to adjust for this type of outcome misclassification.  

Some types of bias are best addressed through the study design, for example, by including 

sampling methods in TND studies’ protocols to reduce selection bias. For many confounders, 

an adjustment in the analysis (including matching in TND studies or the use of propensity 

scores in cohort studies) is likely sufficient. Separate analyses may be required across levels 

of effect modifier. 
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Table 5.1. Controlling for bias and confounding in IVE studies 

Type of 
bias/confounder/effect 
modifier 

Direction of bias 
(↓(decrease) or ↑ 
(increase) VE) 

Controlling using study design  Information required to control in the 
analysis 

Comments 

Health status  ↓: confounding by 
indication 
 
↑: healthy vaccine 
bias, frailty bias 

• Comparing groups with similar 
prognosis (e.g., between a GP who 
does and one who doesn’t 
vaccinate patients although this 
may be difficult in practice [46]; or 
across levels of 
immunosuppression or frailty 
status) 

• restricting or stratifying the study 
population (at the cost of reduced 
precision due to decreased sample 
size) [46], 

• individual matching of exposed and 
non-exposed into main prognostic 
strata or propensity-score 
matching (although this requires a 
large sample size) [46]. 

• Data on presence of chronic 
underlying conditions (like chronic 
pulmonary disease, cardiovascular 
disease, metabolic disorders, renal 
disease), treatment-induced 
immunosuppression and disease-
induced immunosuppression, frailty  

• Number of hospitalization due to 
chronic conditions (as indicator for 
disease severity)  

• Data on presence of perinatal 
conditions (for studies in children 
only) 

• Measure of functional status/frailty 
(probably not captured in 
administrative databases) 

 

Selection bias ↓: less testing in 
vaccinated 
subjects 
 
↓ or ↑: disease 
presentation 

Studies with primary data collection:  

• Standardized case definitions and 
specimen collection criteria (same 
criteria used regardless of 
exposure status.) 

• Asking for consent from next of kin 
for patients too ill to give consent 
 

Studies with secondary data 
collection:  

• Looking for selection in sampling 
according to 
vaccination/background factors (if 
also negative samples are 
available) 

• Using administrative databases 
avoids missing severely ill patients 
due to lack of consent  
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Type of 
bias/confounder/effect 
modifier 

Direction of bias 
(↓(decrease) or ↑ 
(increase) VE) 

Controlling using study design  Information required to control in the 
analysis 

Comments 

Healthcare-seeking bias ↓ or ↑  • Using TND minimizes this bias 
because both cases and controls 
have sought medical care for an 
acute respiratory infection [95]. 

• Studies with secondary data 
collection: Number of healthcare 
visits in a past set period 

• TND: Disease severity, in case this 
differs by ILI etiology (e.g. 
requirement a medical visit, 
hospitalization, ICU, leading to death 
or disabilities) [5] 

• Bias is more likely present in GP 
settings than hospital settings as 
healthcare-seeking behavior is 
likely more similar for more severe 
disease 

• VE then only holds for those 
people that would seek medical 
care for an acute respiratory 
infection  

• TND: Selection bias is still 
possible in TND IVE studies [9]. 
However, Jackson et al. 
conducted a simulation study and 
concluded selection bias was only 
meaningful when rates of care 
seeking between influenza ARI 
and non-influenza ARI were very 
different; therefore, selection bias 
is unlikely to be meaningful under 
conditions likely to be 
encountered in practice [96].  

Misclassification 
(exposure) 

↓: non-differential 
misclassification 
 
↓or ↑: differential 
misclassification 

Studies with primary data collection: 

• Using the TND reduces 
differential recall bias as case 
status is unknown at the time of 
recruitment [9]. 

• Studies using an administrative 
database: 

• For sources that record the 
presence of a vaccination but not 
a potential absence, it must be 
ensured that they cover the entire 
population of interest. Otherwise, 
the part of the population not 
reflected in the data is by default 
assumed to be not vaccinated.  

• It must be assessed to what 
extent the vaccination records 
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Type of 
bias/confounder/effect 
modifier 

Direction of bias 
(↓(decrease) or ↑ 
(increase) VE) 

Controlling using study design  Information required to control in the 
analysis 

Comments 

are expected to be complete. For 
example, GP records may not 
necessarily capture influenza 
vaccination at vaccination clinics 
or in occupational settings.  

•  In case of aggregated 
vaccination information, it must 
be further guaranteed that this 
information originates only from 
the population of interest to avoid 
misclassification towards a 
wrongly increased number of 
vaccinated.  

• Checking interview data against 
vaccination registers or other 
data sources 

Misclassification 
(outcome) 

 
↓: non-differential 
misclassification 
 
↓or ↑: differential 
misclassification 

• Choosing a test with high 
specificity (more important than 
high sensitivity) because a non-
specific test is expected to 
increase the proportion of false 
negatives [97] 

• Imperfect tests lead to less bias in 
cohort and case-control than in 
TND design, however trivial 
difference when using a highly 
sensitive and specific test (e.g. 
RT-PCR) [97] 

• Considering inconclusive test 
results as negative causes less 
bias than considering these to be 
positive [97] 

Studies with secondary data 
collection:  

• it must be ensured that the 
records on disease status cover 
the entire population of interest 
because study subjects without 

• Use of antivirals 

• Laboratory test used 

• Sensitivity and specificity of 
laboratory test.  

• Lag time between symptom onset 
and testing  

• For non–laboratory-confirmed 
outcomes, an analysis in different 
periods of the season (peak or 
outer ends of season), where non-
specific outcomes will likely be 
more specific in the peak period. 
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Type of 
bias/confounder/effect 
modifier 

Direction of bias 
(↓(decrease) or ↑ 
(increase) VE) 

Controlling using study design  Information required to control in the 
analysis 

Comments 

an entry related to the outcome of 
interest are not considered as 
cases 

Age  • For young children: to collect age 
in months  

• Age as a continuous variable or in 
age groups [age groups to be 
harmonized!] 

 

Gender/sex ↓ or ↑   • Male/female, from healthcare 
records 

 

Previous influenza vaccine 
(any) in past seasons 

↓ or ↑  • Yes/No, from past healthcare 
records or interview 

•   

Concomitant 
administration of a 
COVID-19 vaccine 

↓ (or ↑) 
 

 • Yes/No and date, from 
vaccination registry 

 

The effect of COVID-19 vaccination 

on IVE estimates it is yet to be fully 

explored 

COVID-19 vaccine  ↓ • Exclusion of SARS-CoV-2 test-
negative controls from TND 
studies 

• Adjustment for COVID-19 

vaccination in TND studies 

• Yes/No, from vaccination 
registry 

 

Previous pneumococcal 
vaccine in past years 

↑: for non-specific 
outcomes (that 
include secondary 
bacterial infectious 
complications) 

 • Yes/No, from past healthcare 
records or from interview 

 

Previous laboratory-
confirmed influenza 
infection in past seasons 

↓ or ↑   • Yes/No, from past healthcare 
records 

• Controlling for previous influenza 
infection is extremely difficult, as 
multiple factors are involved such 
as time since infection, influenza 
strain, diagnosis of past infection 
(depending on healthcare-
seeking behavior and laboratory-
confirmation), and availability of 
past health records.  

Child’s adherence to the 
local childhood vaccination 
program 

↓ or ↑   • Receipt of childhood vaccines  
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Type of 
bias/confounder/effect 
modifier 

Direction of bias 
(↓(decrease) or ↑ 
(increase) VE) 

Controlling using study design  Information required to control in the 
analysis 

Comments 

Infection pressure ↓ or ↑   • Healthcare worker yes/no 

• Army conscript yes/no 

• Childcare worker yes/no 

• Day care attendance (for pre-
school children) 

• Number of siblings (for children)  

• Controlling for differences in 
exposure to influenza virus is 
extremely difficult, as this variable 
is largely unobserved. 

COVID-19 infection (↓)  • Yes/No from healthcare 
administrative database 

 

The effect of COVID-19 infection on 
IVE estimates it is yet to be explored 

Pregnancy      

Smoking / parental 
smoking status 

↓ or ↑   • From healthcare records or 
interview (non-smoker, ex-smoker, 
smoker)  

 

Institutionalization ↓ or ↑   • Institutionalized vs. non-
institutionalized  

• From healthcare records or 
interview 

 

Socioeconomic status (or 
proxy) 

↓ or ↑     

Statins ↓ or ↑   • Use of statins  

Residence in long-term 
care facility 

↓ or ↑     

Waning immunity ↓ over time  • Time since vaccination  

Virus characteristics VE may change 
over time 

 • Calendar time (to account for any 
drift) 

 

 



DRIVE 777363 – D4.1  

 

42 
 

5.5 Recommendations 

For studies using the test-negative design, in DRIVE project we suggest the collection of the 

following data points: 

• Age in months (for children <1 year old) or years  

• Gender 

• Chronic underlying conditions (e.g. liver disease, heart disease, diabetes, cancer, 

immunodeficiency/ organ transplant, autoimmune disease, lung disease, anemia, renal 

disease, dementia, history of stroke, rheumatologic diseases, obesity) 

• Past healthcare use (e.g., nr of GP visits, nr of hospitalizations in the past period. The impact 

of COVID-19 on healthcare use should be considered when choosing the period.  

• COVID-19 infection and/or vaccination (yes/no and timing) 

• Use of influenza antivirals (type, timing) 

• Lag time between symptom onset and testing 

• Calendar time 

Not all data points that can be collected through primary data collection are available in secondary 

data. For studies using secondary data, we suggest the collection of the following data points.  

• Age (stratification by age groups, minimally 6 months-14 years; 15-64 years; 65+ years) 

• Gender 

• Chronic underlying conditions  

• Past healthcare use (e.g., nr of GP visits, nr of hospitalizations). For studies conducted during 

the COVID-19 pandemic, the impact of COVID-19 on healthcare use may be considered 

when choosing the period. 

 

Each study’s SAP should explain how the data will be used in the analysis. Information on how to 

adjust for confounders in the analysis can be found in Chapter 8. 
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6 Optimization of the value of microbiological and virological 
information 

The WHO recommends using laboratory-confirmed outcomes as opposed to non-specific 

(syndromic) outcomes [2]. The decision to assess potential study subjects for laboratory-confirmed 

influenza virus infection should be based on pre-specified protocol guidelines, to avoid systematic 

misclassification of study subjects, which may arise if clinicians are allowed to decide whom to test. 

Whenever possible, study protocols should specify the symptoms, duration of illness, and other 

eligibility criteria for enrolling and testing patients for influenza (in studies based on administrative 

databases this cannot be done). According to the Committee for Medicinal Products for Human Use 

Guideline on Influenza Vaccines, Non-clinical and Clinical Module [3], cases should meet the EU ILI 

and influenza case definitions. An influenza case definition that includes laboratory confirmation is 

essential to enable estimating IVE against influenza. Available laboratory tests to confirm influenza 

can be grouped in direct or indirect diagnostic tests.  

6.1  Direct diagnostic tests  

Direct diagnostic tests to identify influenza viruses are done on nasal or throat swabs, 

nasopharyngeal aspirates or bronchoalveolar washes [98]. Since the average duration of virus 

shedding in infected persons is around five days and highest around the time of illness onset [99], 

the sample should ideally be collected within seven days after illness onset [2] (in studies with 

primary data collection) to reduce the likelihood of a false-negative test result (otherwise sensitivity 

would be harmed). Sensitivity may be further improved by choosing non-cases from swabs testing 

positive for another respiratory virus to ensure that the sample is of sufficient quality to detect virus 

[9] (alternatively, reference/housekeeping genes could be co-detected [100]). 

6.1.1 Rapid influenza diagnostic tests  

A number of easy-to-use, rapid influenza diagnostic tests (RIDTs) have become available in recent 

years to detect influenza virus antigens or viral enzyme activity. Results are provided in 

approximately 15 minutes and can be used at the point-of-care (POC) in a routine clinical setting 

(e.g. at the patient’s bedside or at the physician’s office).  

 

A major downside is that RIDTs cannot distinguish between influenza A subtypes or, for some tests, 

between influenza types A and B. Moreover, they are less sensitive and considerably less specific 

than RT-PCR and can therefore cause disease misclassification [2]. According to the WHO 

recommendations on the use of rapid testing for influenza diagnosis, issued in 2005, the median 

sensitivity of rapid tests is 70–75%, lower than that of cell culture, while their specificity usually 
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exceeds 90% (median 90–95%) [101]. A more recent metanalysis of 159 studies involving 26 RIDTs 

found that RIDTs have a high specificity (98.2%, 95% CI 97.5% to 98.7%) and positive likelihood 

ratio (34.5, 95% CI, 23.8 to 45.2) and modest and highly variable sensitivity (62.3%, 95% CI 57.9% 

to 66.6%) for detecting influenza [102]. Because of the low sensitivity, false-negative results are a 

major concern with RIDTs, which tend to underestimate IVE [103, 104]. The potential for false-

negative results is a concern, especially during peak influenza activity. These findings mean that a 

positive RIDT result in a patient with ILI provides firm support for the diagnosis of influenza, whereas 

a negative RIDT result has a reasonable likelihood of being a false negative and therefore should 

be confirmed by other laboratory diagnostic tests (RT-PCR, viral culture, or immunofluorescence) 

[2].  

 

According to Tanei et al., testing too early could increase false negatives; therefore, RIDT should 

not be used soon after onset[105].  

 

Since young children have higher viral loads and longer viral shedding than adults, RIDTs perform 

better in children, with approximately 13% higher sensitivity than adults. Similarly, RIDTs have a 

higher sensitivity for detecting influenza A, which causes more severe disease and therefore, usually, 

a higher viral load than influenza B. In the metanalysis by Chartrand et al., no single commercial 

brand of RIDT performed markedly better or worse than the others; however, authors cautioned that 

head-to-head comparisons were not made in most studies [102].  

 

Although specificity is high, false-positive results can also occur, especially when influenza activity 

is low. 

6.1.2 Detection of viral proteins by lab techniques 

Detection of viral proteins by immunofluorescence, using direct fluorescent antibody (DFA) testing, 

also known as the immunofluorescent antibody test (IFA), or enzyme immunoassay (EIA), involves 

sedimentation of respiratory epithelial cells onto a well slide and subsequent staining with influenza-

specific antibodies conjugated to fluorescent dye [106]. It is a rapid, relatively low-cost, and 

commercially available method. Results are available in 1-4 hours.  

 

For seasonal influenza viruses, DFA sensitivity ranges from 60%–100%, compared to the traditional 

viral isolation procedures (Table 6.1. Synthesis of laboratory tests performances in terms of 

sensitivity (SE), specificity (SP), positive predictive value (PPV) and negative predictive value 

(NPV).). The sensitivity of DFA tests for seasonal influenza appears to be higher than that of POC 

tests; however, DFA requires technical expertise and the availability of a fluorescence microscope 
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[106]. During the 2009 H1N1 pandemic, DFA tests sensitivity was variable, ranging between 38% 

and 93%, compared to RT-PCR-based approaches [34, 107, 108]. In the study by Bakerman et al. 

it missed one-third of infected individuals, as the reported test sensitivity was 65.0%; with addition of 

viral culture, sensitivity improved to 81.3% compared to PCR as the gold standard.  

6.1.3 Viral culture 

Culture of influenza virus from a respiratory specimen represented the gold standard for diagnosis 

in the past. Results are available in three to 10 days; this reduces its utility for patient management. 

Shell viral culture (SVC) is another viral culture approach in use since the early 1990s. It consists of 

a rapid culture method that provides results in 24-48 hours. It involves the propagation of viruses in 

mammalian cells grown in small 1-dram vials or shell vials, followed by staining with influenza virus-

specific fluorescent monoclonal antibodies [107]. SVC has higher sensitivity compared to the 

traditional viral culture technique. A modified SVC method using R-mix cells, a mixture of mink lung 

cells and human adenocarcinoma cells, has even higher sensitivity and a turnaround time of 1.4 

days. 

 

Viral culture is almost 100% specific and is nearly as sensitive as PCR when samples have high viral 

titers [109], e.g. in children, as children shed virus in higher titers and for longer periods than adults. 

Typically, the influenza virus-specific monoclonal antibodies used for virus detection in culture target 

the conserved NP protein, which allows distinction between influenza type A vs type B. However, 

this method cannot be used routinely since it is quite cumbersome, requires expertise, specialized 

equipment, and a long testing time.  

6.1.4 Reverse Transcriptase-Polymerase Chain Reaction  

The Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) has replaced viral culture as 

the gold standard test for laboratory confirmation of influenza virus infection during acute illness. It 

involves three essential steps:  

i) Extraction of viral RNA from clinical specimens;  

ii) Reverse transcription of viral RNA to a single-stranded cDNA using the enzyme reverse 

transcriptase; and  

iii) Amplification of the PCR product coupled to fluorescent detection of labeled PCR 

products [107]. 

 

Beyond laboratory confirmation of the presence of influenza virus infection, RT-PCR provides a 

direct and complete identification of influenza A viruses viral type and subtype and of influenza B 
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viruses lineage, so it allows IVE estimate stratification by virus type/subtype or lineage. Nearly all 

RCTs use RT-PCR assays for influenza testing [110], based on the fact that it is currently the most 

sensitive (sensitivity is near to 100%, see Table 6.1 and Table 6.2; lower limit of detection, 1–10 

infectious units [106]) and specific (specificity ranges between 91.1% and 100%) method for 

detection of influenza viruses [99, 111]. It has a 2% to 13% higher detection rate than viral culture, 

and results can be obtained within hours [101]. Moreover, it enables appreciation of the genetic 

variability of influenza viruses. 

 

The multiplex PCR identifies other viruses than influenza, the most important of which are respiratory 

syncytial virus A and B, rhinovirus/enteroviruses, and human metapneumovirus; followed by 

parainfluenza viruses, adenoviruses, coronaviruses and bocaviruses.   

Potential disadvantages of RT-PCR are represented by the fact that it requires technical expertise 

and expensive equipment and that its ability to detect the virus depends on the amount of virus in a 

sample: the less virus, the more cycles required to identify influenza products. The US Centers for 

Disease Control and Prevention suggested using 37 cycles as the limit for classifying a sample as 

positive because positive results detected using a higher number of cycles may be false positives 

(reduced specificity) [99]. Finally, in case of novel virus appearance, rapid production and 

validation of new primer and probe sets may be required [106].  

 

6.1.5 Other amplification techniques 

An alternative molecular technique can be uses for a sensitive detection of viral RNA, including 

LAMP and TMA technologies. These technologies have the same sensitivity and specificity as 

compared to RT-PCR. These techniques can be of high throughput (TMA) or rapid (LAMP).  

The droplet digital PCR (ddPCR) is another technique available. However, the ddPCR is not adapted 

for diagnostic purposes and, as a consequence, should not be used for IVE studies. 

6.1.6 Sequencing techniques 

Sequencing of influenza hemmaglutinin is important to investigate the putative virological causes of 

vaccine failure during IVE studies. Despite the implementation of this new technology in numerous 

laboratories, sequencing is not adapted for detection purposes and should be used only for virus 

characterization to analyze the match between vaccine and circulating strains.  
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6.2 Indirect diagnostic tests  

6.2.1 Serology on paired blood samples  

The approach based on virologically-confirmed human influenza cases has the disadvantage that 

virus shedding in infected persons typically lasts only a week and has often diminished or ended by 

the time of sampling [112]. In addition, infections may cause only mild illness, leading to cases 

possibly remaining undetected. Studies based on the serological evidence of infection have a wider 

window of detection. Data, however, need to be interpreted with caution due to cross-reactivity of 

antibodies among and within virus subtypes and sensitivity decrease when used to detect antibodies 

against novel influenza subtypes [113]. 

 

Serology consists of collecting a first blood sample at symptoms onset and a second two to three 

weeks later. Influenza infection is defined by at least a 4-fold rise in specific antibody titer between 

paired sera. Antibody titer can be obtained by different methods. Those most commonly used are 

the haemagglutination inhibition assay (HAI), microneutralization or virus neutralization assay (VN), 

single radial hemolysis (SRH), complement fixation assay, enzyme-linked immunoabsorbent assay 

(ELISA) and Western blotting [107]. One major concern of ELISA-based tests is the lower sensitivity 

compared to nucleic acid-based tests (NATs). A novel europium nanoparticle-based immunoassay 

for rapid detection using monoclonal antibodies directed against the nucleoprotein from influenza A 

and influenza B viruses showed a sensitivity of 90.7% for influenza A viruses and 81.80 % for 

influenza B viruses with 100% specificity [114].  

 

This test is unlikely to become relevant in DRIVE. 
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Table 6.1. Synthesis of laboratory tests performances in terms of sensitivity (SE), specificity (SP), positive predictive value (PPV) and negative predictive value (NPV). 

PUBLICATION TEST SE (%) SP (%) PPV (%) NPV (%) Notes 

Baker man 2011 
[115]   
Nasopharyngeal 
swabs 
 

DFA 65.0 (59.0, 71.0) 99.6 (99.1, 100) 98.8 (97.0, 100) 85.9 (83.2, 
88.7) 

 

Chartrand 2012 
[101] 
viral culture and 
RT-PCR used as 
references 

RIDT 62.3 (57.9-66.6) 
 

There was a considerable 
overlap among the accuracy 

estimates for the RIDTs. 
Directigen Flu A had the highest 

pooled sensitivity (76.7% [CI, 
63.8% to 86.0%]), followed by 

QuickVue Influenza test, 
although the difference from the 

overall estimate was not 
statistically significant. However, 
BinaxNOW, Directigen Flu A+B, 

and QuickVue Influenza A+B had 
a lower sensitivity compared to 

the overall estimate (57.0%, 
57.2%, and 48.8%, respectively). 

98.2 (97.5-
98.7) 

 
Specificity was 

consistent 
among most 

RIDTs 

34.5 (23.8-
45.2) 

0.38 POOLED ANALYSIS 

RIDTs had a significantly higher pooled sensitivity 
when compared to viral culture rather than RT-
PCR because of the increased accuracy of the 
latter. 

Subgroup analyses showed that RIDTs had a 
significantly higher pooled sensitivity in children 
(66%, 95% CI 61.6% to 71.7%; 60 datasets) than 
in adults (53.9%, 95% CI 47.9% to 59.8%; 33 
datasets); specificities were similar between the 
age groups. RIDTs were associated with a 
significantly higher sensitivity for 
detecting influenza A (64.6%, 95% CI 59.0% to 
70.1%; 72 datasets) than for detecting influenza B 
(52.2%, 95% CI 45% to 59.3%; 27 datasets). 
Results were unchanged when RIDT brand, 
specimen type and reference 

Ganzenmueller 
2010 [105] 
Respiratory 
specimens 
(nasopharyngeal 
swabs, 
pharyngeal 
washes and 
bronchoalveolar 
lavage samples), 
using RT-PCR 
as gold standard 

Point-of-
care 
(POC) 
RIDT 

18.2 
 

100 100 78.1 Detection of novel 2009 influenza A (H1N1) 

DFA 
 

38.7 100 100 82.2 

Virus 
isolation 

45.7 99.8 95.5 94.8 

Ginocchio 2009 
[108] 
 
Detection of 

DFA 47.2 99.6 90.6 96.2 
 

Ages ranged from four days to 98 years; authors 
did not differentiate between adult and paediatric 
populations 

RIDT 21.2 99.5 76.5 94.5  
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novel 2009 
influenza A 
(H1N1) 
 

Viral 
culture 

98.4 100 100 99.9  

Hindiyeh 2005 
[116] 
Throat and nasal 
swabs 
Viral culture as 
reference 
 

Multiplex 
TaqMan 

Influenza A: 100 
Influenza B: 95.7 

Influenza A: 
91.1 

Influenza B: 
98.7 

Influenza A: 
84.7 

Influenza B: 
94.3 

Influenza A: 
100 

Influenza B: 99 

The authors concluded that the multiplex TaqMan 
assay is highly suitable for the rapid diagnosis of 
influenza virus infections both in well-established 
molecular biology laboratories and in reference 
clinical laboratories. 

Multiplex 
RT-PCR 

Influenza A: 100 
Influenza B: 100 

Influenza A: 
93.1 

Influenza B: 
98.3 

87.8 
Influenza B: 

93.2 

Influenza A: 
100 

Influenza B: 
100 

 

IF Influenza A: 84.4 
Influenza B: 33.3 

Influenza A: 
98.8 

Influenza B: 
100 

Influenza A: 
97.2 

Influenza B: 
100  

Influenza A: 
92.8 

Influenza B: 
86.7 

 

Kenmoe. 2014 
[117] 
Nasal swabs 
RT-PCR as gold 
standard 

RIDT 29.4 100 100 89.5  

Landry 2014 
[118] 
Nasopharyngeal 
swabs 
Laboratory-
developed 
TaqMan PCR 
methods used as 
reference 

DFA 
 

Influenza A: 62.5 (53.6 to 70.7) 
Influenza B: 69.7 (52.5 to 82.8) 

Influenza A: 
100 (98.6 to 

100) 
Influenza B: 
100 (98.9 to 

100) 

   

RT-PCR 
Simplexa 
Flu A/B*  

Influenza A 
2μl sample: 83.3 (75.6 to 89.0) 

5μl extract 
89.2 (82.3 to 93.7) 

Influenza B: 
2μl sample: 72.7 (55.6 to 85.1) 

5μl extract 
84.9 (68.6 to 93.8) 

 

Influenza A  
2μl sample: 
100 (98.6 to 
100) 
5μl extract: 
100 (98.6 to 
100) 
Influenza B:  
2μl sample: 
100 (98.9 to 
100) 
5μl extract: 
100 (98.9 to 
100) 

  Positive samples with cycle threshold (CT) values 
of_38 were accepted as positive. For CT values of 
>38, amplification was repeated in duplicate and 
accepted if one replicate was positive. 
 
Although Simplexa was less sensitive than current 
LDT assays, it was simpler, required minimal 
hands-on time, included an internal control, and 
had a shorter assay time. Samples missed by 
Simplexa using extracted samples had very low 
viral loads. More than 95% of the discrepant 
results were from adults and, with one exception, 
were tested late in the course of the illness, when 
patients presented with secondary complications. 
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 Thus, the authors suggested that the clinical 
impact of missing low-viral-load samples might be 
minimal and that a higher detection rate with 
Simplexa is anticipated in settings where samples 
from patients presenting early in illness are tested. 

Leonardi 2010 
[119] 
assay 
performance and 
nasopharyngeal 
swab 

RIDT (EZ 
Flu) 

66.7 100   Detection of novel 2009 influenza A (H1N1) 

Rapid 
shell vial 
culture 

100 100   

Traditional 
tube 
culture 

100 100   

DFA 80 100   

Pollock 2009 
[110] 
nasopharyngeal 
swabs or 
aspiration  
RT-PCR used as 
reference 

DFA 
 

93 97 95 96 Specimens collected only from symptomatic HCW 
or patients who met CDC criteria for influenza-like 
illness, as part of their routine clinical evaluation. 

Reina 2010 
[120] 
nasopharyngeal 
swabs 
RT-PCR used as 
reference 
 

EIA 52.9 100 100 79.7  

Viral 
culture 

94.1 100 100 96.9  

Scheuller 2015 
[109] 
nasal swab, 
throat swab, or 
nasal wash 

RT-PCR 93 (all) 
92 (BMT) 

95 (Non-BMT) 

   The goal of the study was to better understand 
how influenza diagnostic tests perform in the 
basic military trainees (BMT) population, and how 
this performance differs from the general 
population (Non-BMT) 

EIA 57 (all) 
51 (BMT) 

60 (Non-BMT) 

   

Viral 
culture 

51 (all) 
63 (BMT) 

41 (Non-BMT) 

   

Tanei 2013 [104] RIDT 
 

72.9 (95 CI 61.5 to 84.2) 91.3 (79.7 to 
102.8) 

95.6 (89.5 to 
101.6) 

56.8 (40.8 to 
72.7) 

 

Tuuminen 2013 
[121] 
nasopharyngeal 

RIDT 
(mariPOC) 

85.7 (69.7-95.2) (aspirates) 
77.3 (54.6-92.2) (swabs) 

 

100 (aspirates) 
98.3 (swabs) 

  The rapid and automated test system mariPOC is 
based on two-photon excitation fluorometry and 
the concentrations of antigens and fluorescent 
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aspirates 
and swab 
samples 
DFA as the 
primary 
reference 
method 
 

Both aspirates and swabs can be 
analyzed with the mariPOC, 

although aspirates yielded better 
sensitivity than swabs. 

tracer on microspheres by antigen-antibody 
reactions. The technology utilizes microvolume 
reaction chambers and separation-free 
fluorescence measurement; it allows real-time 
follow-up of reaction kinetics, and in this 
application, the test results are read at 
approximately 20 min and 2 h from the beginning 
of the reactions. Strong positive samples can be 
revealed very rapidly, and even the lowest positive 
samples can be detected at the point of care.  

Uyeki 2009 
[122] 
Nasal swab 
confirmatory 
influenza testing 
by RT-PCR (all 
sites) and viral 
culture (sites 1 
and 2) for all 
specimens 
tested at each 
site throughout 
the study period  

RIDT 27 median 
 

19–32 range 
 

97 median 
 

96–99.6 range 

87.5 median 
 

 80.0–90.9 
range 

69.4 median 
 

62.5–79.1 
range 

 

WHO. 2005 
[123] 
Viral culture as 
gold standard  

RIDT  70-75 
median 

90-95 
Median 

   

IF 70-100 
range 

80-100 
Range 

85-94 
range 

96-100 
range 

 

Zhang 2104 
[113] 

ELISA Influenza A 90.7 (95% CI 86 to 
96) 

Influenza B 81.8 (95% CI 61 to 
100) 

Influenza A 100 
Influenza B: 

100 

   

 

DFA: Direct florescent antibody testing; EIA enzyme immunoassay; ELISA: Enzyme Linked Immunoabsorbant Assay; HAI: hemagglutination inhibition assay; IF: 

immunofluorescence; RIDT: Rapid influenza diagnostic test.  
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Table 6.2.  Ranges of sensitivity, specificity, PPV and NPV levels per each test (Source: results from studies listed in Table 6.1) 

TEST Range SE (%) Range SP (%) Range PPV (%) Range NPV (%) 

DFA 47.2-93 97-100 90.6-100 82.2-96.2 

EIA 52.9-60 100 100 79.7 

ELISA 81.8-90.7 100   

IF 70-100 80-100 

 

85-94 

 

86.7-100 

 

RIDT 18.2-85.7 90-100 76.5-100 56.8-94.5 

RT-PCR 72.7-100 91.1-100 84.7-94.3 99-100 

Viral culture 45.7-100 99.8-100 95.5-100 94.8-100 

DFA: Direct florescent antibody testing; EIA enzyme immunoassay; ELISA: Enzyme 

Linked Immunoabsorbent Assay; HAI: hemagglutination inhibition assay; IF: 

immunofluorescence; RIDT: Rapid influenza diagnostic test. 
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6.3 Recommendations  

Vaccine effectiveness studies require the identification of viruses. This should be carried out with 

sensitive and specific techniques and provide detailed relevant biological information about the 

causative agent to avoid confounders. Consequently, this detection should use the most up-to-date 

diagnostic tools. 

The clinical network involved in the DRIVE studies should be able to collect nasal and/or 

nasopharyngeal swabs and send these specimens to a corresponding virological lab.  

Since evidence shows that virus shedding is significantly reduced three or four days after disease 

onset, information regarding the delay between disease onset and the specimen collection should be 

collected in studies with primary data collection, and stratification of IVE estimates according to this 

delay can be considered. It is recommended to exclude swabs collected more than seven days after 

start of symptom onset. 

 

For studies performing primary data collection, we suggest using labs that: 

• Are able to detect influenza by RT-PCR (first line of screening)  

• Further characterize the detected virus by sub-typing (for Influenza A viruses) and lineage 

determination (Influenza B viruses). 

• Have their performance assessed by participation in External Quality Assessment (EQA), as 

those provided by Quality Control for Molecular Diagnostics (QCMD) [124].  

 

If possible, the lab should also be in the capacity to carry out additional influenza testing: 

• Genotyping of the virus (HA and NA gene sequencing, by Sanger or NGS, for genetic clade 

determination, full genome sequencing should also be an objective). This can be very helpful 

for comparing strains and interpreting IVE results. 

• Strain characterization for the identification of potential antigenic variants. This means being 

able to grow influenza viruses on MDCK cells and subsequently determine their antigenic 

profile with ferret sera. This will allow the complete antigenic characterization of the influenza 

viruses, according to the WHO standards as described by the CDC [115].  

 

In addition, the labs may detect with the same techniques other respiratory viruses such as COVID-

19, RSV, rhinoviruses, human metapneumoviruses, adenoviruses and parainfluenza viruses; all 

these viruses can co-circulate during the influenza epidemic and may be responsible for ILI 

presentation. 

For studies using secondary data collection, the preferred lab method to test for influenza is also RT-

PCR.   
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7 Methods for rapid assessment of IVE  

7.1 Purpose of rapid IVE assessment 

Due to the continuous evolution of the influenza viruses and potential mismatches between the 

circulating and the vaccine strains [125], the effectiveness of different seasons' influenza vaccines 

can differ a lot [2]. Rapid or real-time assessment of IVE before the end of the epidemic is important 

for several reasons, including to contribute to the monitoring of the benefit-risk assessment of newly 

reformulated influenza vaccines without undue delay [22]. 

In case early estimates during a given season are available and indicate a low IVE, additional 

preventive measures can be put into practice to ensure a high level of protection in the population, 

e.g. recommendations to continue the use of vaccination, complementary to the use of antivirals to 

mitigate the influenza-associated complications. Likewise, early knowledge about a highly effective 

vaccine might further increase vaccine uptake in the population. Either way, rapidly available impact 

measures communicated to the population during an epidemic can strengthen individual health and 

public health. At the same time, rapid or real-time IVE figures calculated before the end of the 

epidemic may be misleading for the public opinion if not accompanied by appropriate guidance and 

precautionary measures. An influenza epidemic is often characterized by more than one wave caused 

by different viruses circulating in different periods. The vaccines' effectiveness might differ between 

those waves and thus an estimate based on the first wave is not necessarily a good estimate for the 

rest of the season. 

Moreover, early IVE estimates can also benefit future vaccine compositions for the other hemisphere. 

The WHO regularly reselects the influenza strains to be included in the vaccines [15]. The 

recommendation for the Northern Hemisphere is usually made by the end of February [123], which 

consequently marks the time point when the results of the rapid IVE assessment would be expected, 

at the latest. 

7.2 Applied methods for rapid IVE assessment 

The estimation of the IVE during an ongoing influenza epidemic lays high demands on the study 

design, data sources, and the data collection process. However, the only major difference between 

end-season and rapid (mid-season) IVE assessment in terms of data analysis is the length of the 

study period. By analyzing only those data collected until a respective cut-off day before the end of 

the influenza epidemic, several recently published studies  present ‘early’, ‘interim’, or ‘mid-season’ 

estimates [7, 126-131]. The majority of these studies applied the test-negative design [7, 126, 127, 

129-131], while only one utilized the cohort design [128]. In the context of rapid IVE assessment, the 

pros and cons of the two approaches remain as described in 2.3.1 and 2.1, and one would expect no 
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difference between the study designs, as long as the different sources of bias are correctly controlled 

for (see 5.4). 

The challenges of such studies are related to the rapidness in which they must be conducted and to 

statistical power considerations. While respiratory specimens should always be analyzed in a timely 

manner to benefit a patient’s treatment, data collection and statistical analysis only need to be 

accelerated for a rapid IVE assessment. Accordingly, there is no time for extensive data validation 

steps. Moreover, the data must be collected in real-time or with a known delay to ensure that the 

study period is completely covered by the data on the day of analysis. Because the study period is 

ended before all cases of an influenza epidemic have occurred, many rapid IVE estimations are 

characterized by the lack of statistical power due to small numbers of cases. Generally, it is 

considered that the longer the study period, the more precise the estimates. 

This trade-off between rapidness and statistical power and thus reliability of estimates also affects the 

decision of when to conduct IVE analyses. All the studies from the Northern hemisphere referenced 

above had finished their interim analyses in the first half of February 2017 [7, 126-130], i.e. before the 

WHO Consultation and Information Meeting on the Composition of Influenza Virus Vaccines for Use 

in the 2017-2018 Influenza Season [132]. Furthermore, three studies indicated that they had ended 

the study period about two weeks after the peak of the epidemic curve [128, 129, 131]. 

7.3 Recommendations for future near real-time IVE assessment 

In the future, any study design that has been proven to yield valid and reliable estimates can be 

chosen to rapidly assess IVE in near real time. Large test-negative case-control studies implemented 

on top of multiple, existing influenza surveillance/sentinel systems and large cohort studies based on 

automated (secondary) data collections might be the most feasible strategies. The appropriate timing 

within the season depends on the actual purpose of the IVE figures and the course of the epidemic. 

It seems advisable to assess IVE early but after the peak of the influenza-type specific epidemic 

curve, since it has been shown that such studies can reliably predict even end-season IVE [133, 134]. 

However, in order to provide data to the WHO to support the decision on future vaccine compositions, 

one might also preliminarily end the study period shortly before or at the top of an intense epidemic 

that started late. 

In DRIVE, no interim analyses were performed due to a lack of statistical power for brand-specific 

estimates.  
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8 Data analysis for individual studies  

8.1 Vaccine effectiveness measures 

The effect measures to be estimated and quantified in DRIVE are brand-specific IVEs. IVE is usually 

defined as 

 

VE = 1 – RR, 

   

where RR denotes the relative risk of the outcome for vaccinated individuals versus unvaccinated 

individuals [135]. VE is estimated by either one minus a confounder-adjusted estimator of the ratio of 

the influenza attack rates in a cohort or by one minus a confounder-adjusted estimator of the ratio of 

the influenza incidence rates in a cohort or a dynamic population. When the study is a case-control 

design, dependent on the sampling design, either the attack rate ratio or the incidence rate ratio can 

be estimated by the sample odds ratios. If the study is a cohort design, the attack rate ratio can be 

estimated using an attack rate or risk ratio estimator, and to estimate the incidence rate ratio, the 

sample incidence rate ratio or hazard rate ratio is generally used.   

 

In Table 8.1, the estimator type and the estimator are given for a number of study designs in Chapter 

2. 

Table 8.1: Estimator for the analysis of IVE data, by study design and outcome data 

Study design Type of control 
sampling 

Outcome data Estimator 

Cohort design  Count data  
(cases, non-cases) 

Attack rate ratio 

Time-to-event data 
(also person-time data) 

Hazard rate ratio or 
incidence rate ratio 

Nested case-control 
design  

Cumulative sampling Count data  
(cases, controls) 

Odds ratio 

Density sampling Count data  
(cases, controls) 

Odds ratio 

Case-cohort Case-base sampling Count data  
(cases, referents) 

Attack rate ratio with 
pseudo-denominators 
[136] 

Case-control design 
with density sampling  

Density sampling Count data  
(cases, controls) 

Odds ratio 

Test-negative design No sampling Count data  
(cases, controls) 

Odds ratio 

   

The effect measure being estimated in the analysis of IVE data is not VE, but the attack rate ratio 

(cohort design, cumulative sampling) or the incidence rate ratio IRR (test-negative design, density 

sampling) If LL(I)RR and UL(I)RR are the lower and the upper limit of a confidence interval for (I)RR, then 

1- UL(I)RR and 1-LL(I)RR are the lower and the upper limit for a confidence interval for VE. 
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8.2 Power and sample size 

When planning a VE study, the power and sample size calculations can be strongly influenced by a 

number of particular parameters. First, in case brand-specific VE is of interest, the expected overall 

vaccination coverage, the share of each brand, and the assumed VE of each brand have a large 

influence on these calculations. Similarly, when the goal is to obtain strain-specific VE estimates, one 

has to take into account the distribution of the different strains. To accommodate these options within 

DRIVE, a dashboard has been developed to perform sample size calculations for brand- and strain-

specific VE cohort or (test-negative) case-control studies (https://shinyproxy.p-

95.com/app/drivesamplesize). 

8.3 Adjusting for confounders 

8.3.1 Statistical methods  

In the statistical analysis, confounders can be adjusted for (controlled) either by stratification or by 

regression. Stratified analysis works best if the number of confounders to adjust for is small. For each 

possible combination of confounder levels, a separate stratum must be created, with the risk of a 

large amount of sparsely populated strata with too little data to estimate the association between 

vaccination and prevention of the outcome with any reasonable degree of precision. Given that in IVE 

studies the number of confounders to be adjusted for is usually non-small, stratification to adjust for 

confounding is not advised. On the other hand, stratification is an important tool to inspect effect 

modification, see Section 8.4. 

 

Alternative approaches to confounder adjustment are regression and propensity scoring.  

8.3.2 Regression models  

Confounders are adjusted for by including them as covariates in the regression model. 

In Table 8.2, appropriate regression models for the analysis of IVE data are listed by source 

population, study design and type of data. 

  

https://shinyproxy.p-95.com/app/drivesamplesize
https://shinyproxy.p-95.com/app/drivesamplesize
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Table 8.2: Regression models for the analysis of IVE data, by study design and type of outcome data 

Study design Outcome data Regression model 

Cohort design Count data  

(cases, non-cases) 

General log-linked binomial regression model  

Time-to-event data  Cox regression 

Poisson regression 

Case-control design with 

cumulative sampling 

Count data  

(cases, controls) 

Unconditional logistic regression  

Case-control design with 

density sampling  

Count data  

(cases, controls)  

Unconditional logistic regression with adjustment for calendar 

time 

Conditional logistic regression with matching on calendar time 

Case-cohort design  Count data  

(cases, controls) 
Unconditional logistic regression with pseudo-likelihood [137] 

Case-control design with 

density sampling  

Count data  

(cases, controls) 

Conditional logistic regression with matching on calendar time 

Unconditional logistic regression with adjustment for calendar 

time 

Test negative design (cases, controls) Conditional logistic regression with matching on calendar time 

Unconditional logistic regression with adjustment for calendar 

time 

 

Logistic regression for case-control designs with cumulative sampling 

Logistic regression is the standard regression model for the analysis of nested case-control data. The 

parameter of interest is the odds ratio (OR). If the influenza attack rates in the cohort are low, OR ≈ 

RR. 

 

Logistic regression for case-control designs with density sampling 

Just as in logistic regression for nested case-control designs, in logistic regression for case-control 

designs with density sampling, the input data are numbers of cases and controls. However, there are 

some subtle differences to be aware of: 

• the parameter being estimated is the sample odds ratio, but in this design, sample OR 

estimates the population incidence rate ratio  

• controls represent person-time, individuals may be at different times sampled more than once 

as control or may become a case after being sampled as a control; these should be treated 

as independent observations [138] 

• a person who has been sampled twice at different times may have changed his/her vaccination 

status in between 

• calendar time should be included in the regression model to control for seasonal patterns or 

time-dependent differences in the vaccinated/unvaccinated ratio 

 

Logistic regression for test-negative design studies 

In case the control subjects are sampled using sampling scheme mimicking density sampling, the 

regression analysis can proceed as for the previously described case-control studies with density 
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sampling. 

 

Cox proportional hazards regression 

The Cox proportional hazards regression model is widely used to analyze time-to-event data. The 

parameter of interest is the hazard ratio HR, which is often interpreted as the influenza incidence rate 

ratio. The time-to-event is defined as the time-span between the start of the influenza season and the 

occurrence of the outcome, assuming that all vaccinations were given prior to the start of the influenza 

season; alternatively, vaccination can be modelled as a time-varying variable. For subjects who did 

not experience an event, the time-to-event is right-censored at death, moving out of the catchment 

areas, receiving an influenza vaccination other than the defined exposure (when studying type or 

brand-specific IVE), having a (confirmed) influenza infection other than defined outcome (only 

applicable for influenza type- or strain-specific analysis), or the study period, whichever comes first.  

 

Poisson regression 

When time-to-event data is available, an alternative to Cox proportional hazard models are Poisson 

regression models in which the follow-up time is included as an offset term. It can be shown that the 

estimated coefficients from a Poisson regression model with a piecewise constant function of calendar 

time will be identical to those of a proportional hazards model with a piecewise constant baseline 

hazard [139, 140]. An attractive property of Poisson regression models in multi-site studies is that 

they can be used even when only aggregated data can be shared, i.e., number of events and total 

follow-up time. 

8.3.2.1 Representing confounders in the regression model 

The approach advised to represent categorical (dichotomous, nominal and ordinal) confounders in 

the regression model is using indicator variates because this approach maximizes the thoroughness 

of control [141]. If a categorical confounder has k categories, then (k-1) indicator variates must be 

defined:  

 X2 = indicator for the second category 

  . 

  . 

 Xk = indicator for the kth category 

 

The first category is the reference category. 

 

Incorrect modelling of a continuous confounder can result in residual confounding. If the association 

between the continuous confounder and risk of influenza infection is not linear, but, for example, U- 
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or J-shaped, the assumption of a linear relation between the confounder and influenza infection can 

result in substantial residual confounding. It has been shown that modelling the relation between a 

continuous variable and an outcome using fractional polynomials [142] and restricted cubic splines 

[143]. or stratification of the confounder in five strata, tends to limit residual confounding and lead to 

similar results [144]. Within DRIVE, the focus is mainly on smoothed restricted cubic splines as the 

methodology is well developed and does not strongly rely on the selection of knots or cut points. 

8.3.2.2 Selecting confounders in the regression model 

Ideally, confounder selection is partly based on previously published literature and expert knowledge. 

However, we acknowledge that such information might be unavailable and incomplete and data-

driven methods can provide additional insights. 

 

One commonly used data-driven confounder selection method is the following change in estimate 

strategy: 

• all known confounders specified in the protocol (dictated by the knowledge of the disease, the 

medical understanding) should be adjusted for, that is, be included (“forced”) in the regression 

model, regardless of their significance in the specific study.  

• select possible confounders stepwise, one by one in the model, based on the change-in-

estimate criterion, that is, at each step add that confounder that leads to the greatest change 

in the estimate of the relative risk 

• stop adding variables to the model if the changes in the relative risk estimate become non-

meaningful; popular choices for cut-offs for non-meaningful changes are 5% and 10%  

 

An alternative to the forward-selection strategy is the backward-deletion strategy. The forward-

selection strategy is advised because the backward-deletion strategy cannot be implemented when 

the problem of sparse data (see below) occurs. However, note that this approach, and many other 

data-driven approaches, have a number of drawbacks, including: 

• Stepwise selection methods are generally unable to differentiate between different causal 

mechanisms such as confounding, collider effects, etc. 

• Stepwise selection methods are often based on easily criticized criteria, e.g., the selection of 

a cut-off value for the change in estimate is not straightforward [145]. 

• Unless the data is divided into discovery and test data, advanced post-selection inference 

methods have to be used to obtain valid confidence intervals and unbiased estimators. 

8.3.2.3 Disadvantages of regression adjustment to confounder control 

The regression approach to controlling for confounding variables has a few major disadvantages. 
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First, generally, these models assume that the effect of the confounders on the outcome has a 

particular functional form. Additionally, one should be aware of the risk of sparse data bias. This bias 

occurs when there are no or only a few infected cases for some combinations of confounders, and it 

can occur even in quite large data sets. If sparse data bias is suspected, reducing the number of 

confounders may be attempted, or penalized models can be utilized [146]. A diagnostic test for the 

risk of sparse data bias is that the total number of cases divided by the total number of variables in 

the model should not be lower than 7. 

8.3.3 Propensity score methods  

The propensity score method removes confounding caused by the observed covariates by balancing 

baseline covariates values between vaccinated and unvaccinated subjects [147]. This is achieved by 

assigning each subject a so-called ‘propensity score.’ The propensity score is then the predicted 

probability of being vaccinated. VE estimates are obtained using a inverse probability of treatment 

weighted analysis, adjusting for the propensity score as a linear or categorical variable, or by matching 

subjects with similar propensity scores. While in many cases similar results will be obtained, there are 

important potential advantages to propensity scoring over conventional regression. For example, with 

propensity scoring, one needs not to be concerned with overparameterization and can include non-

linear terms and interactions. When influenza attack rates are low but vaccination is common, 

propensity scoring may be better than logistic regression if many confounders must be adjusted for. 

Finally, propensity scoring tends to be the more robust method. For an example of vaccine 

effectiveness with propensity scoring, see Simpson et al. [148].  

8.4 Effect modification  

An effect modifier is a variable that differentially (positively or negatively) modifies the observed effect 

of the exposure on the outcome. Different groups have different risk estimates when effect 

modification is present [43]. A known effect modifier is age. The standard approach to study effect 

modification is to divide the effect modifier in two or more distinct strata and adding the appropriate 

product (interaction) terms (vaccination times stratum) to the statistical model.    

8.5 Missing covariate data  

Missing covariate data can be handled by multiple imputation (MI) [149, 150]. Simulation results 

suggest the application of predictive mean matching after regression switching generally performs 

well, unless 50% or more of the subjects have missing data, or the missing data are ‘missing not at 

random’ (MNAR) [151]. When data are MNAR, exploring other methods such as the pattern-mixture 

model (PMM) approach is advised. For a discussion of this approach as well as publicly available 



DRIVE 777363 – D4.1  

 

62 
 

 

SAS macros, see chapter 7 of the book by O’Kelly and Ratitch [152]. 

8.6 Statistical models to deal with limitations of laboratory tests  

In order to adjust for non-differential disease misclassification, correction equations, such as the one 

showed in Figure 8.1, (in which 𝜋𝑂𝑡ℎ𝑒𝑟 is the risk of disease due to other pathogens than those targeted 

by the vaccine; 𝑝0, the observed disease prevalence among the subjects indicated as unvaccinated; 

𝑝1, the observed prevalence among the subjects indicated as vaccinated; and SPd, the disease 

specificity of the case definition), which requires the disease specificity estimate, should be applied 

to the estimate of vaccine effectiveness [153].  

 

Figure 8.1 Correction equation of IVE adjusting for disease misclassification. Source: [153]  

8.7 Recommendations  

When analyzing data of an individual VE study, the study design should be taken into account 

because the parameter to estimate the VE differs between designs. Confounders of the relationship 

between vaccination and prevention of infection should be adjusted for, which can be achieved by 

regression or propensity scoring. Known confounders should be included in the statistical model, 

regardless of their significance. If additional variables are considered potential confounders, data-

driven regression or propensity score methods can be explored, but care should be taken when 

interpreting their results. Within DRIVE, logistic regression analyses are used for the TND studies, 

and Poisson regression is used for the cohort studies. All analyses are stratified by age group, as in 

this setting, age is generally considered both an effect modifier and a confounder. Additionally, 

confounder control is primarily done through regression adjustment of known confounders and 

sensitivity analyses performance to evaluate the impact of other potential confounding variables. 

Finally, in DRIVE, the regression models tend to use penalized splines to model continuous 

variables such as age and time of disease onset. 
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9 Pooling data from different data sources 

9.0 Prerequisites 

Brand-specific vaccine effectiveness is expected with near certainty to need pooling of data across 

studies. Differences between studies should be limited where possible to allow pooling. The following 

aspects should be taken into account: 

 

• Limit difference between individual study designs by:  

o Reducing choices in local study design 

o Clear definitions and optimal compliance 

• Pool data across settings with similar characteristics (i.e. primary care vs hospital setting) 

• Define upfront the minimum framework to pool the data 

• Define quality criteria  

• Align local designs by using a generic protocol to ensure homogeneity 

o Define common screening/eligibility criteria used to identify cases/controls (Reasons 

for GP consultations/hospital admission) 

• Define a minimum set of data to be collected 

9.1 One-stage vs. two-stage pooling 

There are two statistical approaches for pooling data: a one-stage or a two-stage pooling approach. 

The two-stage approach refers to the classical meta-analytical approach, also called aggregated data 

meta-analysis (AD-MA). In this approach, the patient-level or minimally aggregated data from each 

study are analyzed separately in order to obtain the effect estimates of interest (here vaccine 

effectiveness) and the corresponding confidence intervals (CIs). Then, in the second step, the effect 

estimates are combined by an appropriate meta-analysis model to obtain the meta-analytical (pooled) 

estimate. The one-stage pooling approach analyzes all the combined patient-level or minimally 

aggregated data from the different data sources in a single step. This approach is also called the 

individual participant data meta-analysis (IPD-MA). 

9.1.1.1 Two-stage pooling 

 
Two-stage pooling or AD-MA is the mainstay of systematic reviews [154]. This is the ‘classical’ meta-

regression approach, by which aggregated data (typically effect measures) are combined into a 

pooled estimate and heterogeneity is quantified and possibly explained. There are two popular 

statistical models for AD-MA, the fixed-effect model and the random-effects model [155]. A fixed-

effect meta-analysis assumes all studies are ‘replicates’ estimating exactly the same effect, with the 
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differences between study estimates solely explained by sampling variability. The random-effects 

meta-analysis assumes the observed estimates can vary across studies because of ‘true’ effect 

differences across populations, differences in the conduct of the study, etc., on top of sampling 

variability. Heterogeneity between studies is typically quantified, and the sources of heterogeneity can 

be explored using meta-regression or stratified analysis.  

 

This approach is more flexible than the one-stage pooling approach, as sites sharing only aggregated 

data can be included.  

 

If studies are comparable in terms of population, exposure and case definitions and control for 

confounding, pooling is considered appropriate irrespective of study design. Several examples of two-

stage pooling of IVE estimates, including estimates from studies with different study designs, exist 

[156, 157]. 

 

Two-stage pooling was used for the DRIVE analyses.  

9.1.1.2 One-stage pooling 

 
The application of one-stage pooling or IPD-MA has increased over the last decade, with many 

examples of combining clinical trial data, particularly in the area of cancer and cardiovascular disease 

interventions. In 2015, PRISMA-IPD guidelines for reporting systematic reviews and meta-analyses 

of IPD were published [158]. Advantages of IPD-MA compared to literature-based AD-MA include 

checking and transforming data to common sources or measures, standardizing analysis and 

increased flexibility in performing statistical analyses and common reporting. Major disadvantages of 

IPD-MA include being very time- and resource-intensive and requiring high levels of (international) 

collaboration [154]; furthermore, data protection standards may restrict the feasibility of this type of 

analysis. Random effects (multilevel) regression models are used to jointly analyze IPD from all 

studies while accounting for the (within-study) clustering of subjects [159]. Different model 

specifications are possible, including correlated and independent random effects, as well as stratified 

random-effects models [160].   

9.2 Equivalence of one-stage and two-stage pooling 

The one-stage and two-stage approaches have shown to be equivalent in many situations using 

theoretical considerations [161-163], simulations [160] or empirical comparisons [164], provided the 

same data was used. However, some studies have shown different results for both approaches on 

some occasions [160]. Burke et al. explain why there might be differences [165]. The reasons relate 
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to different modelling assumptions, parameter specifications and estimation methods, which might 

sometimes be subtle. In case of a small number of studies or a small number of events, the IPD-MA 

may be preferred in order to be able to use exact likelihood methods and avoid having to make 

incorrect assumptions about the between-study variance [165]. However, usually, the AD-MA will 

suffice [164].  

 

In the DRIVE pilot season 2017/18, the one-stage and two-stage pooling approaches were compared. 

In line with expectations based on statistical theory, identical to very similar results in the main effect 

and 95%CI for all models were found [166]. 

9.3 Combining both approaches 

Subject-level data are not always available for all relevant studies, and individual-level and 

aggregated data need to be combined. There are three approaches for combining IPD and AD in a 

meta-analysis [167]. First, the available IPD is reduced to AD and then pooled with the other AD. 

Second, it might be possible to construct IPD from published aggregate information (based on 2x2 

tables), which is subsequently combined with the other IPD for analysis. Third, in hierarchical-related 

regression, the IPD and AD data are analyzed jointly.   

9.4 Recommendation 

The objective of DRIVE is to estimate brand-specific IVE in Europe by combining data from different 

study sites. Some site-specific studies will adopt the test-negative case-control study design, while 

others will use a cohort design. These different study designs imply that different data will be collected 

and that different statistical analyses are needed to analyze these data (i.e. logistic or conditional 

logistic regression for case-control versus Poisson or Cox regression for cohort studies). Given the 

statistical equivalence of AD-MA and IPD-MA and given the additional complexity or even impossibility 

of performing IPD-MA when data are collected using different study designs or only aggregated data 

are shared, the AD-MA is the preferred method for combining data from different study sites. 

Furthermore, many of the mentioned advantages of IPD-MA (i.e. transforming data to common 

sources or measures and standardizing analysis) can also be achieved through 

harmonization/standardization of the individual site-specific studies.  

 

Within AD-MA, the random-effects meta-analysis approach is preferred to the fixed-effects approach 

for combining the data from the site-specific studies on IVE. The assumption that the between-study 

variability is explained by sampling variability only, which underlies the fixed-effects meta-analysis, is 

not realistic for the studies on IVE in Europe. There are many differences between these studies, 

including differences in population, design, exposure- and disease ascertainment as well as in 
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covariate adjustment. For DRIVE, we used a random effects meta-analysis approach for every effect 

measure of interest, stratified by age and clinical outcome, while at the same time standardizing the 

design and conduct of the site-specific studies to the extent possible.   
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10 Summary of recommendations 

In this section, the recommendations provided at the end of each chapter are listed.  

 

Study design 

For studies using primary data to monitor IVE, we suggest using the test-negative case-control design, 

with an appropriate choice of the control group and implementation of sampling protocols [14].  

 

For studies using secondary data, we suggest using the cohort design.  

 

Exposure 

The following data on exposure should be collected, both for studies collecting primary data and those 

using secondary data:  

 

• Vaccine brand(s) or type(s) of all influenza vaccinations given during the index season (i.e. 

the season for which IVE is being estimated); for studies on brand- or type-specific IVE 

• Vaccination date(s) of all influenza vaccinations given during the index season, or if not 

available, the sequential order and relative timings of exposure and outcome 

• How the vaccination status was ascertained and whether it was confirmed, e.g. through 

medical records 

Outcome 

In studies collecting primary data, the recommended outcome is laboratory-confirmed, medically 

attended influenza. We suggest the collection of the following data: 

• Symptoms forming the clinical syndrome of ILI or SARI, including the information whether 

hospitalization or intensive care treatment was required,  

• Date of symptom onset,  

• Date the respiratory specimen was taken,   

• Laboratory confirmation yes/no, and if yes, influenza type and preferably also subtype/ 

lineage.  

In studies utilizing secondary data, e.g. from existing healthcare databases, the recommended 

outcome is laboratory-confirmed influenza, overall or stratified by clinical condition. However, this 

recommendation does not exclude the use of syndromic or non-specific outcome definitions 
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discussed in 4.1, either in association with a positive influenza test or alone. We suggest the collection 

of the following data points: 

• Clinical condition (if applicable), 

• Date the respiratory specimen was taken, 

• Detected influenza type and preferably also subtype/lineage for laboratory-confirmed 

influenza.  

 

Potential biases and confounders 

For studies using the test-negative design, we suggest the collection of the following data points: 

• Age by month (for children <1 year old) or year 

• Gender 

• Chronic underlying conditions (e.g. liver disease, heart disease, diabetes, cancer, 

immunodeficiency/ organ transplant, autoimmune disease, lung disease, anemia, renal 

disease, dementia, history of stroke, rheumatologic diseases, obesity) 

• Past healthcare use (e.g. nr of GP visits, nr of hospitalizations in the past period). The impact 

of COVID-19 on healthcare use should be considered when choosing the period. 

• COVID-19 infection and/or vaccination (yes/no and timing) 

• Use of influenza antivirals (type, timing) 

• Lag time between symptom onset and testing 

• Calendar time 

Not all data points that can be collected through primary data collection are available in secondary 

data. For studies using secondary data, we suggest collecting the following data points.  

• Age (stratification by age groups, minimally 6 months-14 years; 15-64 years; 65+ years) 

• Gender 

• Chronic underlying conditions  

• Past healthcare use (e.g. nr of GP visits, nr of hospitalizations). The impact of COVID-19 on 

healthcare use should be considered when choosing the period.  

Each study’s SAP should explain how the data will be used in the analysis. Information on how to 

adjust for confounders in the analysis can be found in Chapter 8. 

 

Optimization of the value of microbiological and virological information 

Vaccine effectiveness studies require the identification of viruses. This should be carried out with 

sensitive and specific techniques and provide detailed relevant biological information about the 
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causative agent to avoid confounders. Consequently, this detection should use the most up-to-date 

diagnostic tools. 

The clinical network involved in the DRIVE studies should be able to collect nasal and/or 

nasopharyngeal swabs and send these specimens to a corresponding virological lab.  

Since evidence shows that virus shedding is significantly reduced three or four days after disease 

onset, information regarding the delay between disease onset and the specimen collection should be 

collected in studies with primary data collection, and stratification of IVE estimates according to this 

delay can be considered. It is recommended to exclude swabs collected more than seven days after 

start of symptom onset. 

 

For studies performing primary data collection, we suggest using labs that: 

• Are able to detect influenza by RT-PCR (first line of screening). 

• Further characterize the detected virus by sub-typing (for Influenza A viruses) and lineage 

determination (Influenza B viruses). 

• Have their performance assessed by participation in External Quality Assessment (EQA), as 

those provided by Quality Control for Molecular Diagnostics (QCMD) [124].  

 

If possible, the lab should also be in the capacity to carry out additional influenza testing: 

• Genotyping of the virus (HA and NA gene sequencing, by Sanger or NGS, for genetic clade 

determination, full genome sequencing should also be an objective). This can be very helpful 

for the comparing strains and interpreting IVE results. 

• Strain characterization for the identification of potential antigenic variants. This means being 

able to grow influenza viruses on MDCK cells and subsequently determine their antigenic 

profile with ferret sera. This will allow the complete antigenic characterization of the influenza 

viruses, according to the WHO standards, as described by the CDC [115].  

 

In addition, the labs may detect with the same techniques other respiratory viruses such as RSV, 

rhinoviruses, human metapneumoviruses, adenoviruses and parainfluenza viruses; all these viruses 

can co-circulate during the influenza epidemic and may be responsible for ILI presentation. 

For studies using secondary data collection, the preferred lab method to test for influenza is RT-PCR.  

 

Methods for near-related time assessment of IVE  

In the future, any study design that has been proven to yield valid and reliable estimates can be 

chosen to rapidly assess IVE in near real time. Large test-negative case-control studies implemented 

on top of multiple, existing influenza surveillance/sentinel systems and large cohort studies based on 

automated (secondary) data collections might be the most feasible strategies. The appropriate timing 
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within the season depends on the actual purpose of the IVE figures and the course of the epidemic. 

It seems advisable to assess IVE early but after the peak of the influenza-type specific epidemic 

curve, since it has been shown that such studies can reliably predict even end-season IVE [133, 134]. 

However, in order to provide data to the WHO to support the decision on future vaccine compositions, 

one might also preliminarily end the study period shortly before or at the top of an intense epidemic 

that started late. In DRIVE, no interim analyses were performed due to a lack of statistical power for 

brand-specific estimates. 

 

Data analysis for individual studies  

When analyzing data of an individual VE study, the study design should be taken into account 

because the parameter that can be used to estimate the VE differs between designs. Confounders of 

the relationship between vaccination and prevention of infection should be adjusted for, which can be 

achieved by regression or propensity scoring. Known confounders should be included in the statistical 

model, regardless of their significance. If additional variables are considered potential confounders, 

data-driven regression or propensity score methods can be explored, but care should be taken when 

interpreting their results. Within DRIVE, logistic regression analyses are used for the TND studies, 

and Poisson regression is used for the cohort studies. All analyses are stratified by age group, as in 

this setting, age is generally considered both an effect modifier and a confounder. Additionally, 

confounder control is primarily done through regression adjustment of known confounders and 

sensitivity analyses performance to evaluate the impact of other potential confounding variables. 

Finally, in DRIVE, the regression models tend to use penalized splines to model continuous variables 

such as age and time of disease onset. 

 

Pooling data from different data sources 

The objective of DRIVE is to estimate brand-specific IVE in Europe by combining data from different 

study sites. Some site-specific studies will adopt the test-negative case-control study design, while 

others will use a cohort design. These different study designs imply that different data will be collected 

and that different statistical analyses are needed to analyze these data (i.e. logistic or conditional 

logistic regression for case-control versus Poisson or Cox regression for cohort studies). Given the 

statistical equivalence of AD-MA and IPD-MA and given the additional complexity or even impossibility 

of performing IPD-MA when data are collected using different study designs or only aggregated data 

are shared, the AD-MA is the preferred method for combining data from different study sites. 

Furthermore, many of the mentioned advantages of IPD-MA (i.e. transforming data to common 

sources or measures and standardizing analysis) can also be achieved through 

harmonization/standardization of the individual site-specific studies.  
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Within AD-MA, the random-effects meta-analysis approach is preferred to the fixed-effects approach 

for combining the data from the site-specific studies on IVE. The assumption that the between-study 

variability is explained by sampling variability only, which underlies the fixed effects meta-analysis, is 

not realistic for the studies on IVE in Europe. There are many differences between these studies, 

including differences in population, design, exposure- and disease ascertainment as well as in 

covariate adjustment. For DRIVE, we used a random effects meta-analysis approach for every effect 

measure of interest, stratified by age and clinical outcome, while at the same time standardizing the 

design and conduct of the site-specific studies to the extent possible.  
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