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Publishable Summary 

Currently, measuring the effectiveness of influenza vaccines relies on observational studies which 

compare the occurrence of influenza in vaccinated and unvaccinated populations or the odds of 

vaccination in cases and non-cases. The different types of observational studies used include cohort, 

case-control (notably, the test-negative design) and screening method study designs.  

 

A key question in assessing influenza vaccine effectiveness (IVE) is how to balance the inputs in 

terms of resources to the accuracy and generalizability of the IVE estimates. Many of the traditional 

observational study designs are relatively costly to establish and maintain, yet remain susceptible to 

bias and may not provide reliable information on all the desired outcomes. DRIVE aims to improve 

existing systems and explore novel and innovative approaches to measure IVE in order to promote 

robust IVE assessment and improve the utilization of existing data sources and new technologies. 

This report presents the results of an initial mapping of existing and potential innovative methods. We 

describe novel diagnostic methods, participatory approaches, ways to capture data on outcomes of 

specific interest, novel designs, non-traditional data sources, and relatively unexplored methods to 

control for confounding in IVE studies. We describe the potential approaches, identify the most 

promising ones, describe if they can be integrated in traditional data collection and how one might 

validate them and recommend prioritization for novel methods to be explored, within DRIVE.



777363 – DRIVE – D7.3  
 

4 

 

 

List of abbreviations 

AGE       Acute gastroenteritis 
ARI        Acute respiratory illness 
CKD       Chronic kidney disease 
DRIVE      Development of robust and innovative vaccine effectiveness 
ECDC      European Center for Disease Prevention and Control 
HCW       Healthcare worker 
ICU        Intensive care unit 
ILI         Influenza-like illness 
ITU        Intensive therapy unit 
IVE        Influenza vaccine effectiveness 
LLDB       Large linked databases 
NPHI       National Public Health Institute 
OWL       Web Ontology Language 
RCGP      Royal College of General Practitioners 
RCT       Randomized controlled trial 
RIDT       Rapid influenza diagnostic test 
RIMT       Rapid influenza molecular test 
RSC       Research and Surveillance Center 
RWE       Real-world evidence 
THL        Finnish National Institute for Health and Welfare 
TND       Test-negative design 
VE         Vaccine effectiveness 
WHO       World Health Organization



777363 – DRIVE – D7.3  
 

5 

 

 

 

Table of Contents 

Document History ..................................................................................................................... 2	

Publishable Summary .............................................................................................................. 3	

List of abbreviations ................................................................................................................. 4	

Table of Contents ..................................................................................................................... 5	

1	 Background and objective ................................................................................................. 7	

2	 Novel and innovative testing methods .............................................................................. 8	

	 Rapid influenza diagnostic tests ................................................................................ 8	

	 Rapid near patient molecular diagnostic assays in primary care ............................... 8	

	 Self-swabbing .......................................................................................................... 10	

3	 Populations of special interest ........................................................................................ 12	

	 Pregnant women ...................................................................................................... 12	

	 Healthcare workers .................................................................................................. 12	

	 Persons with specific chronic conditions ................................................................. 13	

	 Clinical cohort study with novel diagnostic approaches  in specific populations ..... 13	

4	 Outcomes of specific interest for novel and innovative methods .................................... 16	

	 Inclusion of severely ill patients ............................................................................... 16	

	 Consent from next of kin .......................................................................................... 17	

	 Systematic swabbing in hospitals ............................................................................ 18	

	 Active monitoring of the systematic swabbing may be needed? Cases that do not 

seek medical care ............................................................................................................... 19	

	 Non-specific influenza outcomes to estimate influenza VE against influenza ......... 19	

5	 Novel and innovative design ........................................................................................... 22	

	 Adaptive design ....................................................................................................... 22	

	 Case-only studies .................................................................................................... 23	

	 Analysis of adverse events where vaccine failure is treated as an adverse event .. 25	



777363 – DRIVE – D7.3  
 

6 

 

 

6	 Novel data sources ......................................................................................................... 29	

	 Participatory surveillance ......................................................................................... 29	

	 Syndromic surveillance ............................................................................................ 33	

	 Enriching data with external sources: hybrid systems ............................................. 35	

7	 Novel and innovative statistical methods ........................................................................ 37	

	 High-dimensional propensity score adjustment to control for confounding in large 

register-based studies ........................................................................................................ 37	

	 Using negative control outcomes to detect residual confounding ............................ 39	

8	 Ontologies ....................................................................................................................... 40	

	 Ontological approach for identifying influenza cases across heterogenous data 

sources ............................................................................................................................... 40	

9	 Summary and recommendations .................................................................................... 46	

10	 References ...................................................................................................................... 47	

 

  



777363 – DRIVE – D7.3  
 

7 

 

 

1  Background and objective 

The impact of influenza vaccines can be measured in many ways. While randomized studies 

can be considered a gold standard to determine how well a vaccine works, they are often not 

ethically feasible with influenza vaccines given existing vaccination recommendations nor 

methodologically feasible given variation in susceptibility and effectiveness between time, 

place and populations. The DRIVE project relies on observational studies which compare the 

occurrence of influenza in vaccinated and unvaccinated populations without randomization, or 

the odds of vaccination in cases and non-cases. Different types of observational studies 

include cohort, case-control (notably, the test-negative design) and screening method studies; 

for the characteristics of each, please refer to DRIVE D4.1: Framework for analysis of influenza 

vaccine effectiveness studies. 

 

One of the key questions in assessing influenza vaccine effectiveness (IVE) is how to balance 

the inputs in terms of resources to the accuracy and generalizability (including over time and 

place) of the IVE estimates, and other factors such as timeliness, acceptability, applicability. 

Many of the traditional observational study designs are relatively costly to establish and 

maintain yet remain susceptible to bias and may not provide reliable information on all the 

desired outcomes. DRIVE aims to improve existing systems and explore novel and innovative 

approaches to measure IVE in order to promote robust IVE assessment and improve the 

utilization of existing data sources and new technologies.  

 

This report presents the results of an initial mapping of existing and potential innovative 

methods that may be of interest to DRIVE. We describe novel diagnostic methods, participatory 

approaches, ways to capture data on outcomes of specific interest, novel designs, non-

traditional data sources, relatively unexplored methods to control for confounding in IVE 

studies, and the use of ontologies for case identification. We describe the potential 

approaches, identify the most promising ones, describe if they can be integrated in traditional 

data collection and how one might validate them and recommend prioritization for novel 

methods to be explored within DRIVE.  

 

This document will evolve over time. Potentially useful ideas will be collected here throughout 

the project and prioritized. Some of these ideas will be selected to be worked out in more detail, 

including a cost-assessment. Which ideas merit further exploration will be based on 

methodological feasibility and the extent to which we expect them to address a challenge faced 
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by DRIVE. We expect to have a clearer picture of the most important challenges that need to 

be overcome after the results of the first non-pilot study year.  

 

2 Novel and innovative testing methods 

 Rapid influenza diagnostic tests 

RT-PCR, a technique with high specificity and sensitivity, is considered the gold standard for 

laboratory confirmation of influenza. However, RT-PCR is expensive since it requires well-

equipped laboratories and trained personnel; therefore there is an interest to explore less 

expensive alternatives.  

Rapid influenza diagnostic tests (RIDT) are usually based on antigen-detection assays. RIDTs 

are cheaper than RT-PCR and can be used as bed-side test. On the down side, RIDTs have 

a low sensitivity and their use in clinical surveillance studies has demonstrated that there is a 

risk for a high number of false-negative results, which may lead to unneeded use of antibiotics, 

with adverse effects on resources and antimicrobial resistance trends. However, it is possible 

to correct for misclassification resulting from poor sensitivity in the statistical analysis if the test 

characteristics (sensitivity, specificity) are known [1].  

Furthermore, rapid influenza molecular tests (RIMT) have been recently developed, however 

their use as bed-side tests remains limited because they need a specific device with a power 

supply to carry out the molecular amplification. An approach using RIMTs in primary care is 

described below. 

 Rapid near patient molecular diagnostic assays in primary care  

 The method 

To estimate influenza vaccine effectiveness in primary care using rapid near patient molecular 

diagnostic assays. 

 What the method adds  

Rapid diagnostic testing for influenza promises to influence clinical decision making due to the 

rapid availability of the results and hence improve patient outcomes [2]. Furthermore, as they 
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are cheaper than traditional testing methods, they can reduce the cost of IVE research. 

 

It remains to be explored how rapid diagnostic molecular assays could best be integrated into 

diagnostic and management protocols for influenza in primary care. 

 Is this already being done?  

In Europe, very rapid molecular diagnostic assays have recently been licensed for use. It can 

provide a result in 10 minutes and has excellent specificity, a sensitivity almost equivalent to 

that of the conventional PCR, and match favorably against influenza A and influenza B culture 

[3, 4]. However, it has only been available for purchase by hospitals and health care clinics 

and there is no evidence of its use in primary care, so far [5]. Some of these RIMT use a very 

small device, may be transportable by clinicians, and may be of use at the first point of contact 

for people with influenza like symptoms. 

 Potential synergies with other groups 

None. 

 Can this be integrated into existing DRIVE data collection? 

Yes, the data from these rapid diagnostic tests can be used to estimate influenza vaccine 

effectiveness in primary care across all age groups. However, these rapid diagnostic tests do 

not determine the subtype of the Influenza A viruses, nor the lineage of the influenza B viruses.  

 Pros and cons 

The advantages of this method would include: 

• The ability to obtain rapid, accurate diagnostic confirmation of the presence or 

absence of an influenza A/B infection, provided the negative and positive 

predictive value meet predefined minimum criteria 

• Provide cheaper information to support clinical research including studies on 

vaccine effectiveness and real-world trials in primary care 

• The opportunity to combine rapidly collected research information on diagnosis 

with changes in clinical practice/ patient management 
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The disadvantages would include: 

• Logistical issues of implementing rapid diagnostic testing into busy clinical/ 

primary care practice workflows 

• Impossibility to assess IVE by subtype and lineage, unless additional sample is 

collected and sent to specialized laboratory 

• Quality issues when GPs administer the rapid test. 

 

Thus, initially, this method would need to be limited to enthusiastic primary care pilot practices 

prepared to undertake intensive sampling to prove feasibility and cost compared with 

traditional diagnostic laboratory testing. 

 Validation 

Validation of the feasibility and cost compared with diagnostic laboratory testing (RT-PCR) 

would be required. Validation could be achieved through double testing of patients or random 

allocation of rapid tests vs. RT-PCR. 

 Self-swabbing 

 The method 

Swabs could be taken by symptomatic patients themselves and be sent for diagnostic testing. 

 What the method adds  

Swabs used for diagnostic testing are typically taken by trained healthcare workers. Self-

swabbing would allow influenza status determination in patients without needing to see a 

healthcare worker. In addition, self-swabbing would allow swabbing immediately after the 

onset of symptoms meeting the criteria, thus avoiding time lags in sampling leading to false 

negatives.  Self-swabbing could be implemented in the context of other participatory methods 

of data collection (see 6.1, 6.3 and 6.4). 
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 Is this already being done?  

Self-swabbing has been tested within participatory epidemiology studies and been found 

feasible to obtain valid samples for analysis [6]. Personal experience in using self-swabbing 

for the detection of influenza viruses during antiviral treatment has taught us the results were 

pretty good and the infection could be documented properly for the vast majority of the self-

swabs analysed (close to 98%) [7]. However, there is a need for training, or for the 

implementation of an e-learning source that would explain the procedure for self-swabbing. 

Such a resource should be developed. 

 Potential synergies with other groups 

Please refer to section 6.1.4. 

 Can this be integrated into existing DRIVE data collection? 

This approach would not fit within the current DRIVE data collection but could be a part of other 

participatory approaches proposed in this report (see sections 3.4 and 6.1).  

 Pros and cons 

The advantages of this method would include: 

• No need for the patient to see a healthcare worker to obtain a swab 

• Capture of influenza cases that do not seek health care 

• Rapid swabbing after symptom onset 

The disadvantages of this method would include: 

• Accuracy of the sampling technique, the reason(s) for sampling and the timing 

of sampling 

• Need to ensure that clinical case definitions are met for those to be swabbed, 

in the absence of a healthcare worker 

• Need for training or e-learning source that would explain the procedure for self-

swabbing 

 Validation 

In a subset of patients, swabs could be taken by both the patient and a healthcare practitioner, 
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and results between the two swabs compared.  

 

3  Populations of special interest 

In some populations, IVE data is scarce though of interest. Here we describe three such 

populations: pregnant women, health care workers, and persons with specific chronic 

conditions. These populations could be targeted for participation in clinical cohort studies due 

to their frequent contact with healthcare. 

 Pregnant women 

Influenza vaccination is recommended for pregnant women (WHO recommendations, ECDC 

recommendations, national recommendations), although not all countries have accepted this 

recommendation currently, and in countries where it is recommended, the coverage is low [8]. 

The need for IVE data in pregnant women is described in the ECDC specific report on pregnant 

women and influenza [9]. Special information is needed for these groups because two persons 

(the mother and the unborn/newborn child) are at risk and may potentially be protected through 

vaccination at the same time; furthermore, pregnancy is associated with specific 

immunological changes which cannot be studied in other groups.  

Pregnant women often have special and frequent contacts with healthcare and may have 

special interest to promote the wellbeing of their unborn child. This may offer the possibility to 

implement special study designs, such as serologic studies or self-swabbing.    

 Healthcare workers  

Healthcare workers (HCWs) are a group of special interest because of their close contact with 

patients. Due to this close contact, HCWs experience a high infection pressure, especially 

those working in units where infectious diseases are treated. At the same time, this close 

contact means HCWs who are infected with influenza have a high possibility to transmit 

influenza to patients, especially to those vulnerable to severe disease[10, 11] . Therefore, 

assuming that a vaccinated healthcare worker will not only not fall ill, but will also not transmit 

if infected (asymptomatically), IVE estimates in HCWs are of interest both from an occupation 

health and from a patient safety point of view.  

In Finland, the new Communicable Disease Act states that unvaccinated HCWs are allowed 
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to treat vulnerable patient groups only under exceptional circumstances. Because of this (at 

least moral) engagement, knowledge of the effects of repeated vaccination on the vaccine 

effectiveness and on prevention of the total individual burden of influenza over the years is 

important to ensure the rights of this group of HCWs.  

HCWs are often in daily contact with health care organisations (researchers, laboratories), and 

many of them have special education and interest for clinical procedures; therefore, 

implementation of specific study designs may be possible among them.  

An example of a study that could be conducted in these populations in described below. 

 Persons with specific chronic conditions  

Patients with specific chronic conditions, who are recommended influenza vaccination 

regardless of age, are of interest for IVE studies. Information on the conditions may be 

available through electronic medical records (e.g. ICD codes) that can be directly linked with 

vaccination and infectious disease databases for VE estimation, or may be proxied from e.g. 

registers recording pharmaceutical purchases. 

 

Examples of conditions of interest include 

• Chronic pulmonary conditions (e.g. asthma, chronic obstructive pulmonary disease) 

• Chronic cardiovascular diseases (e.g. coronary artery disease, chronic heart failure) 

• Chronic neurological and neuromuscular conditions 

• Diabetes 

• Renal insufficiency 

• Chronic liver diseases 

• Chronic immunodeficiencies 

 Clinical cohort study with novel diagnostic approaches  in 
specific populations  

 The method 

Although very resource demanding in the traditional approach, a clinical cohort study may be 

feasible among specific populations with close contacts to health care organisations e.g. 

HCWs or pregnant women (see chapters 3.1 and 3.2), or persons with specific chronic 



777363 – DRIVE – D7.3  
 

14 

 

 

conditions, if novel diagnostic approaches are used. Once established, the same cohort may 

also be used to carry out immunological studies for improving tools for interpreting the VE 

results.    

 

After enrolling the cohort, background data and the vaccination status will be assessed and 

updated during the follow-up. The cohort will be equipped with an influenza test kit and 

instructed how to self-swab for influenza (although this has been used, there may be a needed 

to include validation in a sub-set of the cohort), whenever pre-defined symptoms occur. 

Symptoms could be identified by regular follow-up (e.g. weekly calls by a study GP who checks 

the symptoms, or daily text messages followed by a call from a study GP in case symptoms 

are reported) and upon case confirmation the GP could instruct the participant to take a self-

swab. and how to send the specimen to the study laboratory [6]. In addition, the participants 

may be instructed how to perform a rapid bed-side test after self-swabbing and to send a 

mobile phone picture of the result to the study staff. In addition to SMS, this could be done e.g. 

via an internet-based platform, through which also additional information on symptoms, 

missing swabs or changes in the background factors could be provided.    

 

This design can be complemented with immunological sampling before and after the influenza 

season, potentially also after vaccination and/or influenza infection.  If combined with covering 

self-swabbing, this would give information on the seroconversion after natural virus infection, 

and its effect to the VE estimate during the season and towards its end, to give information on 

to which degree natural clinical and subclinical infections explain the observed decrease in the 

VE estimate towards the end of the season.  Including specimens for cellular immunity would 

further increase knowledge of the reciprocal roles of pre-existing immunity and immunity 

acquired from vaccination and encounter with circulating viruses.  

 What the method adds 	

The method allows for the collection of data to calculate IVE in groups of special interest.  

 

Capture of influenza cases that do not seek medical care 

More sensitive criteria for swabbing can be used with moderate expenses  

Rapid swabbing after symptom onset   

 

Furthermore, this type of data can provide tools for interpreting the VE estimates, e.g. to 
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explore the role of immunity to natural infection, and the lowering of the VE towards the end of 

the epidemic. 

 Is this already being done?  

A clinical immunological cohort study (humoral and cellular immunity) is ongoing among 

vaccinated HCWs in Finland starting 2017-18, but self-swabbing and unvaccinated individuals 

are not included. 

 Potential synergies with other groups 

This method could be complemented with enrolling and instructing a larger cohort for 

participatory epidemiology, i.e. web-based collection of background and vaccination data and 

announcement of symptoms and other clinical features of defined outcome events (see also 

chapter 6.1).  

 Can this be integrated into existing DRIVE data collection? 

The self-swabbing could perhaps be piloted and validated in a TND study. The results could 

be pooled as a (nested) TND study, if the same information is collected, the background 

information is updated at the time of self-swabbing and the individuals with the same swabbing 

criteria can be identified. 

 Pros and cons 

The advantages of this method would include: 

• Easy contact to potentially motivated, important target groups 

• Capture of influenza cases that do not seek health care 

• Rapid swabbing after symptom onset 

The disadvantages of this method would include: 

• Accuracy of the sampling technique, the reason(s) for sampling and the timing 

of sampling 

• Verification of vaccination status and background factors may be difficult 

• Needs personnel for recruitment and training 

• Taking serology samples may be considered interventional 
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 Validation 

The following aspects could be implemented to validate the swab and the vaccination status: 

• If reliable vaccination databases are not available, a study specific vaccination card 

could be given at recruitment, before vaccinations have started and asked to be 

returned, signed by the vaccinator (or with statement of non-vaccination at the end of 

the epidemic; a negative status is still impossible to verify, if e.g. inter-linkable vaccine 

registry is not available)  

• Re-sampling at the laboratory (probably possible only later when the initial phase of the 

disease is over) 

• Validating against RT-PCR 

4  Outcomes of specific interest for novel and innovative 
methods 

 Inclusion of severely ill patients  

An important reason for influenza vaccination is to prevent severe illness, such as disease 

requiring treatment in intensive care units (ICUs) and disease in elderly which prohibits them 

from returning to independent life after hospitalization. However, most severely ill people may 

be excluded from clinical studies because they often cannot give consent, which introduces 

bias in the study population. Even if severely ill people are able to consent, they are often 

unable to give all the information required for the study, such as date of symptom onset and 

vaccination status, which introduces information bias. These issues have to be examined from 

an ethics and study conduct point of view. 

The VE to prevent severe influenza cases may be assessed in population-based cohort studies 

using secondary data from inter-linkable routine health care registers which include vaccination 

data and data on e.g. reasons and length of hospitalizations and causes of death. However, 

information on laboratory confirmation may be lacking. 

 

 Two examples to tackle these challenges are described below. 
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 Consent from next of kin 

 The method 

One way to circumvent the difficulty of asking consent from a severely ill patient is to ask 

consent from the next of kin.  

 What the method adds  

By asking consent from next of kin, more severely ill patients can be included in prospective 

clinical studies and test-negative design studies in hospital settings. 

 Is this already being done? 

THL (Finland) has received a positive feedback from the Ethics Committee to ask consent from 

the next of kin and used it in a TND VE study for elderly. This increased the rate of severely ill 

cases included in the study to some degree. 

In England, TND studies do not necessarily require ethics approval when they are conducted 

as part of routine surveillance. 

 Can this be integrated into existing DRIVE data collection? 

Yes, this can be integrated into existing prospective epidemiological studies. 

 Pros and cons 

The advantages of this method would include: 

• Consent, which is difficult to obtain from severely ill patients, can still be obtained 

The disadvantages of this method would include: 

• Next of kin may not always be available 

• The importance of the validation of the data provided by the next of kin from medical 

records is increased  

• More efforts may be needed for the justification of the approach in the ethical evaluation 

process 
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 Systematic swabbing in hospitals 

 The method 

To improve data on severely ill patients in cohort studies, National Public Health Institutes 

(NPHIs) could promote enhanced and systematic swabbing in the ICUs and/or among 

hospitals (e.g. for elderly or risk groups), as well as systematic collection of vaccination data. 

 What the method adds  

Systematic swabbing and collection of vaccination data would improve the data retrieved from 

registers, enabling the calculation of more accurate IVE estimates, but removing the need for 

individual consent.   

 Is this already being done? 

THL has received a positive opinion from the ethics committee to swab the most severely ill 

patients for national influenza surveillance purposes without individual consent. However, this 

has currently not been implemented for IVE assessment.   

 Potential synergies with other groups 

Collaborations with hospitals are crucial for this approach to succeed.  

 Can this be integrated into existing DRIVE data collection? 

This could be integrated into existing DRIVE data collection in those sites where data is also 

used for national or regional surveillance. 

 Pros and cons 

The advantages of this method would include: 

• Individual consent, which is difficult to obtain from severely ill patients, may no longer 

necessary (depending on the interpretation of legislation) 

• Data for patients beyond those with a primary suspicion of influenza disease would be 

swabbed (e.g. those with cardiac attack) 
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The disadvantages of this method would include: 

There may be administrative and /or economical hinders for implementing an enhanced 

systematic swabbing. 

 Active monitoring of the systematic swabbing may be needed? 
Cases that do not seek medical care 

Most studies IVE studies take place in, or are based on data from, general practice, emergency 

departments or hospitals, and therefore estimate IVE against medically-attended outcomes. 

Cases that do not seek medical care are not captured. These cases may be included in IVE 

studies through participatory epidemiology (see section 6.1). 

 Non-specific influenza outcomes to estimate influenza VE 
against influenza 

 The method 

When studying influenza VE it is essential to accurately identify cases of the vaccine-

preventable disease, often making laboratory confirmation a requirement for influenza VE 

studies. However, laboratory tests make influenza VE studies expensive. These costs might 

get substantial when large sample sizes are needed, such as for studies aiming to estimate 

brand-specific influenza VE. Therefore, DRIVE has a strong interest in alternative ways of 

estimating influenza VE.  

 

We propose to estimate influenza VE against influenza based on less specific influenza 

outcomes, such as influenza like illness (ILI). However, ILI is caused by several respiratory 

pathogens, including influenza but also others like RSV and parainfluenza. This implies 

outcome misclassification, with many of the ILI cases not being influenza. However, data from 

laboratory surveillance might be used to predict the ILI seasonal trends [12] based on which 

estimates of the positive predictive value (PPV) of influenza given ILI can be obtained. The 

PPV will vary over the influenza season, with the highest PPV values expected during the peak 

of the influenza epidemic. Therefore, it is important to estimate PPV as a function of time. 

These time-specific PPV estimates can then be used to correct the VE estimates based on ILI 

for outcome misclassification. Several methods to correct for outcome misclassification exist, 
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including probabilistic bias analysis [13], Bayesian methods [14], likelihood-based methods 

[15] as well as imputation methods [16]. Alternatively, one might consider estimating influenza 

VE based on ILI, using only ILI cases that occurred during the peak of the influenza season, 

when misclassification is expected to be low and PPV highest.  These alternative ways of 

estimating influenza VE against influenza should be validated through benchmarking the 

results with results obtained using laboratory-confirmed influenza. 

 What the method adds 

Less expensive way of estimating influenza VE compared to a traditional TND, as swabbing 

will only be necessary for a subset of the ILI patients to calculate the PPV over time.  

 

In addition, targeting non-specific outcomes gives more information on the  value of vaccination 

in reducing the total disease burden caused by influenza than estimating the VE against 

laboratory confirmed influenza only, provided that the higher incidence and the costs of non-

specific disease entities are considered when interpreting the presumably lower VE estimates 

against non-specific than specific outcome events/episodes [17]. This approach is very 

important from a public health point of view.  

 Is this already being done 

ILI has been used as an outcome in a number of clinical trials (such as those summarized by 

the Cochrane Collaboration [18]) and burden of disease studies [19]. THL uses ILI (defined as 

certain ICD-10 codes) as one outcome of their population-based database IVE studies.  

 Potential synergies  

Many public health institutes have GP sentinel surveillance to monitor ILI complemented with 

laboratory surveillance. In population-based cohort studies using secondary data from existing 

databases, changing from non-specific endpoints to the specific ones causes only minor to 

moderate increase in the resources needed.   

 Can this be integrated into existing DRIVE collection 

Yes, data on ILI and laboratory surveillance of the geographical area are required.  Addressing 
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non-specific endpoints is one of the secondary objectives of the population-based database 

cohort study protocol (D7.2). 

 Pros and cons 

The advantages of this method include: 

• Less expensive since it would not require systematic laboratory testing 

• Results of high relevance for public health 

 

The disadvantages of this method include: 

• Results need to be interpreted carefully, and taking into consideration influenza 

laboratory surveillance data for the season 

• No type or strain-specific data will be generated. 

 Validation 

This approach would need to be validated against laboratory-confirmed outcomes.  
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5  Novel and innovative design 

 Adaptive design  

 The method 

An adaptive design refers to a process in which earlier findings influence on later stages of the 

process. Adaptive designs help researchers to reduce the overall amount of collected data 

needed for the analysis. This approach is usually followed in clinical trials and DRIVE has the 

possibility to explore its validation and relevance in observational studies for influenza vaccine 

effectiveness estimation. 

 

Although a Bayesian perspective is not especially necessary for adaptive designs, is the most 

natural way to follow this design. Bayesian approaches constantly update probabilities and 

data can be explored as being collected or performing interim analysis. These analyses are 

useful to compare exposure groups at any time before the end of the recruitment process. The 

frequency and timing of interim analysis should be specified in advance when conducting it 

following classical (frequentist) sequential methods due to the likelihood of type I error 

increases as one looks at the data more frequently. However, Bayesian analyses can be 

performed at any point of the study [20].		

	

There are different types of adaptive design. What we can perform with the data collected by 

DRIVE is a kind of adaptive design called internal pilot study or sample size reassessment. 

The calculation of an appropriate sample size to achieve the desired level of statistical power 

is always implicit when planning a study. Power calculations require specifying an effect size 

and estimating “nuisance” parameters, for example, the overall incidence of the outcome. In 

observational studies, the rate of the exposure must be estimated as an additional source of 

randomness. A poor estimate of any of those parameters will produce an erroneous sample 

size calculation [21]. 

 

Internal pilot designs use a revised “nuisance” parameter estimate at an interim stage of the 

study that allows the re-adjustment of the final sample size. This approach selects a sample 

size sufficiently large to achieve the desired power without using unnecessary resources [21].	
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 Is this already being done? 

Although several groups have been publishing about adaptive designs [22-25], there are not 

many references that relate adaptive design and observational studies [21, 26]. 

 Pros and cons 

Main drawbacks for this design could be found when establishing the timing and frequency of 

the interim analysis if the analysis is done following classical statistics. In the Bayesian 

approach we have to choose an appropriate prior distribution that could be non-informative but 

which we can update with our data. 

 

Frequentist approach estimates if the difference between exposure status is statistically 

significant whereas Bayesian methodology estimates the magnitude of this difference. 

Moreover, previous knowledge can be incorporated in the Bayesian approach and researchers 

can obtain an indication of how the new information modifies their previous belief. Frequentist 

statistical inferences are designed to be done only at prespecified interim analyses or the final 

analysis. By contrast, one can perform a Bayesian analysis at any point in the study without 

incurring any statistical penalty for repeated analyses. As Bayesian approach permits constant 

monitoring of data, investigators have the flexibility to refine the study [20].	

	

Internal pilot designs reduce the risk of poor sample size estimation leading to better resource 

utilization [21].	

 Case-only studies  

 The method 

To estimate influenza vaccine effectiveness in primary care and hospitalized cases using the 

self-controlled case series study’s methodology. 

 What the method adds  

The case-series method is applicable to routinely collected data at primary care or hospital 

level, so there is a great interest in order to solve the point related to the sample size of the 
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studies.  

 Is this already being done?  

There is only one study reported in the literature using the case series method to estimate 

influenza vaccine effectiveness, during the 2009 pandemic, in Germany [27]. A second recent 

study has been conducted in UK evaluating the influenza vaccine effectiveness in reducing 

antibiotics prescription in pre-school children [28]. 

 Potential synergies with other groups 

Not applicable. 

  Can this be integrated into existing DRIVE data collection? 

Yes, participating sites can contribute with secondary data. 

  Pros and cons 

The advantages of this method would include: 

• Is applicable to routinely collected data at primary care or hospital level (database at 

GPs level, at hospital level and/or notifications of confirmed influenza cases) 

• Use of secondary data 

• Increased sample size 

• Obtaining VE by brand, age and target group for vaccination 

• Regulators are familiar with the methodology as it has been used widely to explore 

vaccine safety 

The disadvantages would include: 

• Lack of adjustment for time-varying confounding 

• Because of the timing of vaccination often before or early during the influenza epidemic, 

the individual control time during an epidemic may be short 

• It has to rely on the unvaccinated cases to model the seasonal effect of influenza. There 

is some question over whether this is OK, might seasonal effects be different for the 

unvaccinated population? 
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• For cases who have influenza very early in the season, are they more or less likely to 

be vaccinated?  

• How long do you assume that the vaccine is effective for? It is possible to have an 

indefinite length risk (or effectiveness) window.  

• Because risk (effectiveness) windows are long it's not very powerful, so ideally a large 

sample size is needed. 

• Results may be difficult to interpret 

• In countries with low influenza vaccine coverage, difficult to have sufficient sample size 

• Thus initially this method would need to be well explored from a methodological point 

of view as it has been used rarely to estimate Influenza VE. 

 Validation 

This method would need to be well explored from a methodological point of view as it has been 

used rarely to estimate Influenza VE. 

 Analysis of adverse events where vaccine failure is treated as an 
adverse event  

  The method  

As all medical products, no vaccine is perfectly safe or effective. Vaccine safety is monitored 

through pharmacovigilance systems where reporting of adverse events are regularly analysed. 

Systems like the Vaccines Adverse Events Reporting System (VAERS) organised by CDC  

with regular weekly analyses allow detection of possible safety signals [29]. In Europe these 

activities can be carried out through the European EudraVigilance database, which contains 

all suspected adverse drug reactions (ADRs), for authorised medicines in the European 

Economic Area (EEA), included those related to vaccines [www.adrreports.eu]. 

Events of (confirmed or suspected) influenza vaccine failure can be reported as adverse 

events. Confirmed vaccination failure is defined as the occurrence of the specific-vaccine 

preventable disease in a person who is appropriately and fully vaccinated taking into account 

the incubation period and the normal delay for the protection to be acquired as a result of 

immunization. Reports of suspected vaccine failure are also collected. An increase in vaccine 

failure reports could point to a decreased degree of protection provided by the vaccine 
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(although this may also be due to new diagnostic or different testing protocols). Furthermore, 

the use of vaccine failure reports in combination with other data sources could be explored for 

vaccine effectiveness studies. 

 What the method adds   

Evidence related to vaccine lack of effectiveness could trigger signals that could be further 

investigated in specific studies with the complementary aim of better characterizing all potential 

variables associated to vaccination failure, both host- and vaccine-related: 

1) Host-related:	

(a) immunodeficiency (leading to suboptimal or even absent immune response after 

vaccination);	

(b) age-related maturation and senescence of immune responsiveness;	

(c) insufficient or suboptimal immune response (other than a defined 

immunodeficiency) to one or more antigenic vaccine components or vaccine strains or 

serotypes; this may or may not be measurable by standard laboratory tests such as 

serum antibody tests;	

(d) interference due to other infectious agents (e.g., wild type enterovirus infection 

causing interference with the immune response to oral poliomyelitis vaccine);	

(e) waning immunity;	

(f) suboptimal health status (e.g., underlying disease, nutrition);	

(g) immunological interference (e.g., maternal antibodies, administration of 

immunoglobulins);	

(h) pre-existing infection with pathogen targeted by the vaccine or immunization during 

incubation period (after exposure to pathogen);	

(i) immunosuppressive therapy.	

2) Vaccine-related:	

(a) vaccine is not 100% efficacious against included antigens;	

(b) incomplete coverage of strains, serotypes, genotypes, antigenic variants or escape 

mutants that can cause a vaccine-preventable disease;	

(c) antigenic interference or other vaccine-vaccine interactions in case of co-

administered vaccines;	

(d) manufacturing-related (e.g., batch variations, quality defect).	
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 Is this already being done?   

To the best of our knowledge, no previous study reports such an analytic methodology. Indeed, 

we believe that this method could represent an innovative strategy to study vaccines 

effectiveness. Although influenza-vaccine effectiveness evaluation starting from 

pharmacovigilance information could be very complex (i.e., lack of information on serologic 

post-immunization tests, poor quality of data included in pharmacovigilance reports, poor 

quality of data included in pharmacovigilance databases, poor evidences from observational 

studies), combining such data could increase robustness of DRIVE results regarding vaccine 

effectiveness. 

 Potential synergies with other groups 

Synergy with marketing authorization holders would be required as they report all safety events 

to regulatory agencies. 

 Can this be integrated into existing DRIVE data collection? 

It has been decided that DRIVE will generally not consider safety events. However, the safety 

event “vaccine failure” reported under European pharmacovigilance could be further 

examined. 

 Pros and cons 

Advantages 

• Links with other approaches such as participatory  

Disadvantages 

• No controls 

• No or unstandardized laboratory confirmation 

• Very incomplete reporting likely for such a frequent event as influenza vaccine failure 

• High likelihood of bias 

• Not fully in the scope of DRIVE, rather complementary to DRIVE 

• Difficulty in evaluating vaccine effectiveness starting from pharmacovigilance 

observational data 

• Approach may lead to delays due to difficulty in obtaining data 
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 Validation 

Feedback from pharmacovigilance databases on how lack of effectiveness are reported as 

adverse events for influenza vaccines.  

Past vaccine failure report from years with known vaccine effectiveness would need to be 

analysed, to determine if there is indeed a signal to be observed in years of lower vaccine 

effectiveness. 

It remains to be determined if vaccine effectiveness could be calculated by combining vaccine 

failure reports with other data source, such as number of vaccine doses administered, and 

through which methods (e.g. related to screening method).   
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6  Novel data sources 

 Participatory surveillance 

Participatory approaches are characterized by active involvement of the study population. Here 

we describe the online participatory disease surveillance platform Influenzanet; we look at the 

added value of collecting detailed data albeit on a limited number of subjects; and describe 

populations that could be of specific interest for IVE studies through clinical cohort studies with 

active participation of the participants.  

 The method 

The wide-spread use of internet in the general population has allowed for the development of 

online participatory disease surveillance, the largest of which in Europe is Influenzanet. On 

other continents similar initiatives exist such as Flu Near You in the United States [30]  and 

Flutracking in Australia [31]. 

 

Influenzanet is a “system to monitor the activity of influenza-like-illness (ILI) with the aid of 

volunteers via the internet” [32]. It was launched in 2003 in the Netherlands and Belgium, and 

over the past 15 years it was expanded to include 11 European countries - The Netherlands, 

Belgium, Portugal, Italy, United Kingdom, Sweden, France, Spain, Ireland, Denmark and 

Switzerland (Figure 1) [33]. Participation is open to anyone residing in the countries where 

Influenzanet is implemented; in the 2015-2016 season there were over 36,000 participants 

[33]. Data is collected on various medical, geographic and behavioural questions at 

registration, after which participants receive weekly reminders to report any symptoms. 

Participants receive a weekly reminder to report any symptoms. Cases are identified using the 

ECDC ILI case definition [32].  
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Figure 1. Timeline of Influenzanet (in blue) and other participatory surveillance systems for influenza-like-illness. 
Source: Koppeschaar et al. 2017 [33] 

 
Koppeschaar et al. have summarized previous research on representativeness of Influenzanet 

participants compared to the general population and Influenzanet vs. traditional ILI. Research 

conducted in different countries and years showed varying results in terms of Influenzanet 

participants representativeness of the general population. Quantifying the differences between 

participants and the general population allows to correct for them in the analyses [33]. ILI 

incidence as determined through Influenzanet and traditional surveillance systems were found 

to be positively correlated (including ILI rise, peak and decline), although Influenzanet 

incidence rates were systematically higher in all countries [33].  

 What the method adds 

Capture of ILI cases that do not seek medical care 

Traditional ILI surveillance is based on cases that seek medical care. Internet-based ILI 

surveillance allows to capture those cases that do not seek medical care and are therefore 

missed in traditional surveillance.  

 

Furthermore, Influenzanet questions participants on their health care-seeking behaviour 

following the report of symptoms. This allows for the quantification of the proportion of ILI cases 

that seek medical care. Of note is that large between-country variations in healthcare- seeking 

behaviour have been observed [33]. 
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Estimation of IVE against ILI 

Influenzanet collects the self-reported vaccination status of participants, therefore IVE against 

ILI can be calculated by comparing ILI incidence in vaccinated and non-vaccinated 

participants. This has previously been done by using Influenzanet data from Flusurvey (UK) 

[34], Grippenet (France) [35] and De Grote Griepmeting (Netherlands) [36]. Some studies have 

found IVE estimates broadly comparable to those found in other studies [34, 35]. Furthermore, 

stratification VE estimates against ILI have been produced by risk groups such as presence of 

chronic condition and age >60 years [33].  

Close to real-time estimates 

Participants receive weekly reminders to report any symptoms; therefore, ILI incidence can be 

followed close to real time. This allows for rapid assessment of IVE [34].  

Pilot study on virological confirmation of ILI 

For test-negative designs and cohort studies undertaken within DRIVE, laboratory-confirmed 

influenza is the primary outcome. Currently, Influenzanet only collects information on ILI and 

not on laboratory-confirmed influenza. 

However, Wenham et al. conducted a pilot study aiming to obtain virological confirmation of 

influenza infection among Flusurvey participants and concluded self-swabbing in an online 

cohort study is methodologically feasible [6]. Virological swabbing kits were sent to pilot study 

participants, and if they reported ILI they were requested to take a self-swab and return this to 

a laboratory for multiplex respiratory virus PCR testing [6]. All returned samples contained 

human DNA, consistent with the correct use of the swab. Twenty out of 21 participants who 

completed an evaluation form report that undertaking the swab was easy or very easy. The 

authors note that the cost and logistics of distributing kits may make self-swabbing impractical 

for routine influenza surveillance, but may prove useful for ad hoc surveys or as a 

supplementary tool to traditional surveillance systems [6].  

 What else could be done 

Collection of product-specific vaccination information 

As the aim of DRIVE is to estimate product-specific IVE, collection of details on the vaccine 

received will be important. In a small number of European countries, such as Finland and 

Slovenia, only one influenza vaccine product is procured for the adult population (see DRIVE 

D3.1), therefore product-specific vaccination status can be inferred from the vaccination status 
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(NB: neither of these two countries participates in Influenzanet). However, for most countries 

this will not be feasible. For this reason, an alternative way of collecting the information of the 

vaccine received by participants will have to be developed.  

(Selectively) implement virological confirmation to calculate virologically-confirmed VE  

A pilot study has shown the methodological feasibility of obtaining self-swabs of Influenzanet 

participants with ILI[6]. Exploring possibilities of implementing this at a sufficiently large scale 

to enable the calculation of VE against virologically-confirmed influenza would be of interest.  

 Potential synergies  

This approach could be complemented with the self-swabbing approach. Preliminary contacts 

have been made in Italy with Influenzanet coordinators [37] to explore their availability in 

including the evaluation of VE against virologically-confirmed influenza as already tested in UK 

[6]. There is also the potential of implementing self-swabbing in some other EU countries 

participating in Influenzanet. 

 Can this be integrated into existing DRIVE data collection? 

Could be part of a TND study or clinical cohort study, if their protocol is adapted to the DRIVE 

requests, including the collection of validated data from their vaccine clinic on the specific 

vaccine brand used and on the date of the vaccine. Influenzanet can be invited to submit a 

proposal through the DRIVE tender process.  

 Pros and cons 

The advantages of this method would include: 

• Ability to capture people who do not seek medical care 

o More complete picture of number of cases 

Elimination of between-country bias caused by differences in healthcare-seeking 

behaviour  
• Ability to analyse ILI data close to real-time 

• Less costly and less resource intensive than traditional TND studies  

The disadvantages of this method would include: 

• Issues of representativeness of underlying study population and case severity  
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• Outcome: 

o Currently only ILI is measured, with no virological confirmation  

o Implementing virological confirmation may be expensive and logistically 

challenging. To be explored if it is more expensive than TND. 

• Vaccination status: 

o Self-report, no verification of vaccination status against medical records 

o Currently no info on vaccine brand used 

• Influenzanet is present in 10 European countries (in some of which they collaborate 

with the public health institute), but not in all countries of interest to DRIVE 

 Validation 

• Validation of brand-specific vaccination status will be required. 

TND and cohort studies estimating influenza VE are considered the golden standard. Pilots 

using participatory surveillance with brand-specific VE against virologically-confirmed 

influenza should be performed in countries where cohort or TND studies are also being 

conducted to validate this approach.  

 Syndromic surveillance  

Traditional influenza surveillance and vaccine effectiveness studies use data from people who 

attend formal medical care (potentially missing a large proportion of the influenza disease 

burden) and may be subject to delay in obtaining the data. Various proxy indicators have been 

proposed to complement the picture provided by the traditional systems. 

 Insurance claims data  

This has been described by Viboud et al. [38] and seems to provide good alignment with the 

timing and amplitude of proven influenza activity. 

• Advantages: Good spatial resolution & potentially timeliness, preliminary studies report 

good correlation with traditional surveillance, information is individual level 

• Disadvantages: Reliant on a certain kind of healthcare financing/reporting system, may 

be costly (if using proprietary databases), only tracks visits to formal medical care 
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• Feasibility for IVE studies: possible if vaccination data available (e.g. by linking with a 

vaccination register). 

 School absenteeism 

Association has been noted between the school-reported absence prevalence and ILI 

surveillance in the UK [39]. An alternate system using students’ personal smart cards and 

telephone queries was described in Hong Kong [40]. It has been proposed that school 

absenteeism data would be useful in guiding public health interventions such as school closure 

in the event of a severe epidemic. 

• Advantages: Reaches a population that may otherwise missed by traditional 

surveillance 

• Disadvantages: Not all areas have feasible tracking systems, presumably high 

heterogeneity in systems, highly unspecific outcome, children not a targeted group of 

influenza vaccination in many countries 

• Feasibility for IVE studies: In order to be of use, the system would need to be highly 

automated. The low specificity of the outcome might mean that IVE is difficult to detect. 

 Over-the-counter medication sales.  

OTC sales of medicines (e.g. cough remedies) have been linked to the volume of urgent care 

centre visits [41] and communitywide epidemics including annual influenza epidemics [42]. 

• Advantages: Captures a population that is symptomatic but not necessarily visiting 

formal care 

• Disadvantages: Large variance in data availability, only population-level data, highly 

unspecific outcome 

• Feasibility for IVE studies: Poor (difficulty in linking with vaccination data). This is only 

useful for indicating when the influenza season starts. 

 Social media & search engine data.  

Google Flu Trends was an attempt to use search engine queries to track influenza-like illness. 

It provided very timely data with good correlation with CDC ILI surveillance (with which it was 
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calibrated) but suffered some major failures in 2009 and 2012/13. Twitter is another web 

platform used in influenza surveillance [43]; its use in health research has been described in a 

systematic review [44]. In 2013, CDC launched a competition to use social media to predict 

influenza[45] and several teams’ contribution is included on the FluSight website [46]. Other 

(mainly US-based) disease-tracking apps include Doctor Reports Illness Tracker [47] and 

Sickweather [48]. 

 

Advantages:  

• Potentially very timely, low-cost, captures people not visiting formal care. Emerging 

technologies such as machine learning and AI may add to the effectiveness of these 

approaches. 

Disadvantages:  

• Only population-level data, highly unspecific outcome (e.g. search queries not 

necessarily related to actual disease episode) 

• Feasibility for IVE studies: Poor (difficulty in linking with vaccination data) 

In conclusion, many proxy indicators may be more suited to disease surveillance and prediction 

than studying IVE (unless they can be accommodated in hybrid systems, please see below). 

In particular, linking with vaccination status information is a question to address. 

 Enriching data with external sources: hybrid systems  

 The method 

Hybrid systems that utilize both traditional and novel “big data” approaches have been 

discussed as a way to improve infectious disease surveillance [49]. The rationale of using the 

two side-by-side is in linking the potential timeliness and scale of digital media with the more 

specific disease confirmation by traditional surveillance systems. 

 

Traditional means such as physician-based sentinel surveillance systems can provide 

individual-level information on various unspecific (ILI) or specific (LCI) outcomes but are 

relatively costly to maintain. Where electronic health registers are available, their information 

can be used in a more cost-effective way, but both approaches only reach people who attend 

formal medical care. 
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A hybrid system would combine data from the traditional studies with other sources (e.g. the 

proxies outlined under 6.3 and participatory epidemiology) to improve the accuracy or 

representativeness of IVE estimates [44].  

 Pros and cons 

The data from nontraditional sources may be inherently more complex and noisy than 

traditional individual-level health data and may require a lot of pre-processing. In order to 

estimate vaccine effectiveness, a  link to vaccination status information (either individual or 

population level) would be necessaryI didn’t find more recent data than this publication from 

2017. No info on the influenzanet website On the other hand, they may be more wide-ranging 

and affordable given the use of existing data and crowdsourcing.	

 Is it already being done? 

To our knowledge, hybrid systems have not been used in VE studies. There are applications 

that aggregate data from various sources for the purpose of infectious disease surveillance 

(e.g. Healthmap [44]).  

 Validation 

Any new methods must be validated if they are to be routinely used for public health purposes; 

this may be hampered by a circular problem (evidence is not generated because systems are 

not implemented; systems are not implemented due to lack of evidence). Methods using hybrid 

systems may also run into novel privacy concerns that need to be taken into account. 
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7  Novel and innovative statistical methods 

 High-dimensional propensity score adjustment to control for 
confounding in large register-based studies 

 Propensity score 

Rosenbaum and Rubin defined the propensity score as ‘conditional probability of assignment 

to a particular treatment given a vector of observed covariates’ [50]. It translates into that each 

study subject in an observational study can be assigned an estimated probability of being 

exposed conditional on the measured covariates affecting the exposure and outcome of 

interest. Consequently, the propensity score can take only values from 0 to 1. It is often 

estimated using logistic regression but also other data mining techniques can be applied [51]. 

 

The propensity score is a balancing score that can be utilized to control for confounding. The 

conditional distribution of the observed covariates given the propensity score is the same for 

the exposed and the unexposed subjects [50]. In other words, in a group of subjects with similar 

propensity scores the covariate distribution of the exposed is similar to the covariate 

distribution of the unexposed. Therefore, stratification, matching, or regression adjustment for 

the propensity score or its subclasses are potential techniques to control for confounding 

caused by the observed covariates. However, although the balance on the covariates might 

be greater than one would expect from randomized treatment assignment, the propensity 

score does not allow to control for confounding caused by unmeasured or imperfectly 

measured covariates [52]. 

 Algorithm for variable selection 

The propensity score model is aimed at prediction not explanation. Thus, the significance of 

covariates included in the model is not important. It has been recommended to select all 

variables associated with both the exposure and the outcome as well as all variables related 

solely to the outcome. Variables that are mainly affecting the exposure but not or only little the 

outcome (e.g. instrumental variables) should not be included in the propensity score model 

though [53]. 

Unfortunately, there are confounding factors that cannot be measured in observational studies. 
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General examples are a person’s frailty or healthcare seeking behaviour. However, a 

sufficiently large set of measurable proxies might form a good surrogate for those confounders. 

Schneeweiss et al. described and demonstrated the use of a generic algorithm that empirically 

identifies and automatically selects such proxies from healthcare claims databases [54]. 

The important steps are 

• the identification of empirical candidate covariates, 

• the assessment of recurrence, 

• the prioritisation of covariates, 

• the selection of covariates, 

• and estimation of the propensity score. 

In a nutshell, the idea is to identify the most frequent diagnoses, procedures, and prescriptions 

recorded in the available databases. For each of these, three binary variables are created that 

indicate the within-patient frequency (e.g. once, sporadic, or frequent [54]) of the respective 

diagnosis, procedure, or prescription. Subsequently, the algorithm evaluates the potential of 

each binary indicator variable to confound the exposure-outcome relationship and includes the 

most prioritised ones in the propensity score model. In addition to the automated selection, 

further covariates such as age, sex, and other demographics can be manually forced into the 

model based on the study-specific background. 

 Application in influenza vaccine effectiveness research 

Propensity score adjustment is often used in pharmacoepidemiological studies and it seems 

to be a valuable method worth to be also considered in influenza vaccine effectiveness 

research [55-58] [59, 60]. Estimates originating from cohort studies are prone to confounding 

bias, which is difficult to control for because differences in infection pressure or healthcare 

seeking behaviour can hardly be measured directly. Therefore, in the presence of routine 

healthcare register data, high-dimensional propensity score adjustment might be a solution.  

 

The propensity score could be easily added as a covariate independently precalculated by 

each study site in accordance with the available data sources into the DRIVE data collection. 

However, the validity of this method in infectious diseases epidemiology must be investigated 

first. One of the fundamental assumptions on which the propensity score definition is based on 

is the Stable Unit Treatment Value Assumption [50]. As the (influenza) outcome of one study 

subject is not necessarily unaffected by the treatment (vaccination) assignment of the other 

subjects, this assumption does not hold in settings with coverage levels close to or above the 
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herd immunity threshold. Additionally, the propensity score method only leads to unbiased 

estimates, when truly all confounders are included in the model. The presence and effect of 

unobserved confounders might violate the statement of strongly ignorable treatment 

assignment [50, 52]. How these issues influence the applicability of propensity score 

adjustment in studies estimating influenza vaccine effectiveness must still be understood. 

 

Ultimately, the propensity score methodology is designed for binary exposures. In general, 

vaccination against influenza can be modelled as a binary variable. In practise, the exposure 

is sometimes also classified into more than two levels holding information on the time since 

vaccination, the number of doses received, the credibility of the vaccination status’ data source, 

or the vaccine brand. Such exposure variables could be simplified into binary ones, although 

part of the information would in consequence be lost. Alternatively, a subgroup analysis could 

be conducted in which only two exposure levels are allowed and all study subjects with other 

exposure levels are excluded potentially introducing other biases. 

 Using negative control outcomes to detect residual confounding  

 Negative control outcomes 

Negative control outcomes are alternative outcomes used in observational studies to detect 

residual confounding in the estimates of the effect between the exposure and outcome of 

interest. They must be neither directly nor indirectly be influenced by the exposure of interest. 

Furthermore, all observed and unobserved confounders of the actual association of interest 

must have the same effect on the negative control outcome as they have on the outcome of 

interest [61].	

 Detection of and control for residual confounding 

If there appears to be an effect between the exposure of interest and the negative control 

outcome after adjustment for all measured covariates, the estimates of the effect between the 

exposure and outcome of interest are confounded. Tchetgen proposed a control outcome 

calibration method to correct for unobserved confounding using negative control outcomes 

[62]. 
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 Application in influenza vaccine effectiveness research 

Negative control outcomes seem to be a valuable tool to check for residual confounding in 

influenza vaccine effectiveness estimates based on cohort studies. However, it is very difficult 

to define such alternative outcomes. The best attempt to start with might be to conduct a study 

in a season with a confirmed vaccine antigen mismatch. The negative control outcome could 

be influenza caused by the virus type not included in the vaccine. 

 

Such an analysis could be easily integrated into DRIVE as it only requires a confirmed vaccine 

antigen mismatch season that has already been observed in the past (e.g. 2014/15) and will 

possibly also occur in the future. The general protocols would not need any changes or 

adaptations. In case other negative control outcomes fulfilling all the criteria mentioned in 7.2.1 

can be found (Therefore, the suitability of RSV-positive laboratory tests should be 

investigated!), they should be included in the DRIVE protocols. 

 

Instead of aiming for the correction of confounded estimates, it might be also worth to simply 

revise the adjustment for confounders using the propensity score methodology (see 5.2 High-

dimensional propensity score adjustment to control for confounding in large register-based 

studies). By repeating the two steps of improving the propensity score and assessing the 

magnitude of residual confounding, the bias due to unobserved confounders could possibly be 

minimised. Further research would be crucial. 

8 Ontologies 

 Ontological approach for identifying influenza cases across 
heterogenous data sources 

Ontologies form a time-consuming but appropriate method for formalizing the specification of 

key variables used in real world evidence (RWE) studies. Ontologies may well become one of 

the established tools of RWE studies [63]. DRIVE could develop ontologies for key variables 

to improve the comparability and transparency of the same variables recorded across health 

systems.  
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 Introduction to ontologies: 

An ontology in information science is defined either as a set of concepts and their relationships 

or as the formalization of a specification [64]. Using the former definition such concepts need 

to be defined explicitly and their relationships constructed through shared conceptualization by 

domain experts. This is definition used in this section. Ontological approaches can be used to 

define key variables such as cases and also outcome measures within DRIVE.   

 

Ontologies have been used in a range of setting where there may be inconsistency in key 

variables. For example, the definition of a case of acute gastroenteritis (AGE) can be 

challenging to detect from routine data. Not every case of diarrhea represents as case of AGE, 

but very often it will do, our ontological approach allows such dilemmas to be dealt with 

transparently. In AGE, it was found that variability in case definition may account for the 

difference in incidence and prevalence reported by different data sources [65]. Exactly the 

same challenges may be faced with ILI in DRIVE. Ontologies can help to formalize these 

differences in case definitions.   

 

The semantics of the concepts within a domain can be modelled using an ontology language 

such as Web Ontology Language (OWL) [66].  These ontologies are independent of the actual 

representation of the concepts (e.g. coded clinical data) and therefore, can be used to align 

data originating from heterogeneous data sources.  

 Recommended three step methods: 

Ontologies can enhance the case identification from routine health data sources. A three step 

process an ontological approach for identifying cases is described below (Figure 2) [67].    

It is suggested to use this within DRIVE as it separates the conceptual (ontological stage) from 

the coding layer, where clinical codes are selected to identify the case or outcome measure 

specified.  Importantly this measure includes a logical data extract step.  This final step is 

important because it allows the investigator to document the effect off using different 

conceptual elements and combinations of codes.  This latter step makes final code selection 

transparent.  
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Figure 2. Three step process for ontological case identification 

The three-step process in detail: 

1. Ontological layer: Implementing the three-step process begins with the creation of an 

ontology defining concepts required to describe a case (e.g. Influenza ontology defines 

the range of concepts used to define an influenza case). The ontology will typically 

include concept categories such as diagnostic criteria, symptoms/ examination 

findings, pathology/ test results (e.g. positive virology) and therapy (e.g. exposure to flu 

vaccine, which may challenge the likelihood of the diagnosis, or anti-viral therapy). 

2. Coding layer: Concepts in the ontology are then mapped to clinical coding systems 

used to represent the data within the data sources that require case identification. 

During code mapping, it may not be possible to map all ontological concepts to the 

codes in the target clinical coding system (e.g. therapeutic codes do not exist within 

ICD-10). As a result several levels of semantic equivalence between ontological 

concepts and the codes that they are mapped to can be defined: (1) Direct mapping 

(concept can be directly mapped to specific code(s)), (2) Partial mapping (concept 

can be mapped to a code in the coding system which is incompletely or partially 

representative), or (3) No clear mapping (concept cannot be mapped to any code(s)).  

3. Logical query layer: Mapped ontology can be used as the basis for developing a case 

identification algorithm implemented within the data source. The algorithm will need to 
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limit false positive cases that can arise due to miscoding (code selected which lack 

specificity for concept), misclassification (coding indicates the right concept but had 

incorrect detail), misdiagnosis (coding indicates an indirect) or no coding due to: a) 

information not being known to anyone anywhere b) information not known to the 

provider but known elsewhere in the health system c) information known to provider 

but not coded entry recorded (e.g. free text entry or information in hospital letter). 

The comprehensive definition of ontological cases allows case identification at various degrees 

of certainty based through the implementation of the algorithm. The algorithm and the ontology 

can be used to define what constitutes of definite cases (case ascertainment with a high degree 

of certainty - using concepts related to diagnosis), probable cases (case ascertainment with a 

moderate degree of certainty - using concepts related to a pattern of symptoms and signs) and 

possible cases (case ascertainment with a low degree of certainty - using concepts related to 

lab tests without clear indication of result). 

 What the method adds  

This ontological approach allows to more comprehensive case identification from real world 

data sources. The method improves consistency of case identification across multiple sites 

that use different terminologies to represent data. The ontological case identification approach 

is capable of handling situations where different sites have varying availability of data (e.g. 

data sources in some sites may have diagnostic data but not prescribing data). 

An ontology is flexible and offers substantial advantages over other approaches.  For example, 

an ontology can take into account temporal changes in clinical concepts that may reflect 

influenza drift and may be relevant to data quality [68]. It can also be used to draw in other 

concepts which may improve sensitivity and specificity to maximize case ascertainment.  For 

example, the University of Surrey has used ontologies to maximize identification of ethnicity 

through including concepts like language spoken [69]. 

Additionally, code mapping across different health systems can more accurately take account 

of contractual or health systems reasons why particular codes are used (or not used).   

 Is this already being done? 

The ontological approach has been successfully used by the Royal College of General 

Practitioners (RCGP) Research and Surveillance Centre (RSC) for a number of case 

identification process such as chronic kidney disease (CKD) and influenza immunization during 
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pregnancy in surveillance activities in England [70, 71] in addition to the case definition for AGE 

set out above.  

 

The RSC started their journey through difficulties they had in identifying cases of diabetes in 

routine data.  Diagnosis codes, may be missing, therapy (e.g. on insulin) may indicate the 

patient had the condition, as might blood tests showing raised glucose [72, 73].  A range of 

different concepts can all imply the patient has this diagnosis, though individual codes have 

different mappings and diagnoses end up being definite, probably or possible [74]. Through 

several iterations we eventually adopted a more formally ontological approach [75].  
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 Can this be integrated into existing DRIVE data collection? 

This could be integrated into DRIVE data collection during future flu seasons for national or 

regional surveillance. Ontologies would be useful to consistently define ILI, acute respiratory 

illness (ARI) and vaccine exposure.   

 Pros and cons 

The advantages of this method would include: 

• Improved identification/definition of key variables – case definition, key exposures and 

outcome measures.  

• Consistency and transparency in case and other key variable identification across 

multiple sites that use different clinical coding systems 

• Ability conduct more accurate case identification when availability of coded data is 

limited and not sufficient to ascertain with high degree of certainty using conventional 

methods 

• They can be revised. Ontologies can be revised, or concepts included, or not included 

depending on their impact on case or other variable ascertainment.  

The disadvantages of this method would include: 

• The time-consuming nature of ontologies. They are appropriate for case definitions, 

key exposures and outcome measures, but not more widely.  

• Justification for revising the elements used in an ontology risks criticism.  

 Validation 

Validation can be performed internally and externally. Internal validation requires detailed 

record examination to explore if cases are false positives, and looking at high risk individuals 

for false negative. External validation can be carried out by comparing the sensitivity and 

specificity of ILI case ascertainment against conventional case identification methods or 

published information.  Publication of an ontology on the Bioportal website also allows others 

to comment, modify and use the ontology.  Our CKD ontology is an example of this, see: 
https://bioportal.bioontology.org/ontologies/CKDO.  
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9 Summary and recommendations 

The table below summarizes all the methods discussed in this document, with the proposed 

prioritization for further exploration and potential implementation within DRIVE in three 

categories: 

High priority (1) 

Medium priority (2) 

Low priority (3) 

The priorities were assigned by the authors of this document based on a synthesis of the pros 

and cons identified above. This priority-setting is considered preliminary and not prescriptive 

in relation to methodological innovations to be considered by DRIVE. Future priority-setting of 

innovative approaches (e.g. in upcoming calls for tenders) may build upon, expand or modify 

the principles outlined here. 

 

Method Priority 
Rapid near patient molecular tests 1 

Clinical cohort study with novel diagnostic approaches in specific populations 3 

Consent from next of kin 2 

Systematic swabbing in hospital 1 

Non-specific influenza outcomes to estimate influenza VE 1 

Adaptive design 3 

Case-only studies 3 

Analysis of adverse events where vaccine failure is treated as an adverse event 3 

Participatory surveillance 2 

Syndromic surveillance 3 

Hybrid systems 3 

High-dimensional propensity scores to control for confounding in large register-

based studies 

1 

Using negative control outcomes to detect residual confounding 2 

Ontological approach for identifying influenza cases across heterogenous data 

sources 

 

1 
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